Efficient Synthesis of Compact Deep Neural Networks
- URL: http://arxiv.org/abs/2004.08704v1
- Date: Sat, 18 Apr 2020 21:20:04 GMT
- Title: Efficient Synthesis of Compact Deep Neural Networks
- Authors: Wenhan Xia, Hongxu Yin, Niraj K. Jha
- Abstract summary: Deep neural networks (DNNs) have been deployed in myriad machine learning applications.
These large, deep models are often unsuitable for real-world applications, due to their massive computational cost, high memory bandwidth, and long latency.
In this paper, we review major approaches for automatically synthesizing compact, yet accurate, DNN/LSTM models suitable for real-world applications.
- Score: 17.362146401041528
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (DNNs) have been deployed in myriad machine learning
applications. However, advances in their accuracy are often achieved with
increasingly complex and deep network architectures. These large, deep models
are often unsuitable for real-world applications, due to their massive
computational cost, high memory bandwidth, and long latency. For example,
autonomous driving requires fast inference based on Internet-of-Things (IoT)
edge devices operating under run-time energy and memory storage constraints. In
such cases, compact DNNs can facilitate deployment due to their reduced energy
consumption, memory requirement, and inference latency. Long short-term
memories (LSTMs) are a type of recurrent neural network that have also found
widespread use in the context of sequential data modeling. They also face a
model size vs. accuracy trade-off. In this paper, we review major approaches
for automatically synthesizing compact, yet accurate, DNN/LSTM models suitable
for real-world applications. We also outline some challenges and future areas
of exploration.
Related papers
- Quantization-aware Neural Architectural Search for Intrusion Detection [5.010685611319813]
We present a design methodology that automatically trains and evolves quantized neural network (NN) models that are a thousand times smaller than state-of-the-art NNs.
The number of LUTs utilized by this network when deployed to an FPGA is between 2.3x and 8.5x smaller with performance comparable to prior work.
arXiv Detail & Related papers (2023-11-07T18:35:29Z) - Dynamic Early Exiting Predictive Coding Neural Networks [3.542013483233133]
With the urge for smaller and more accurate devices, Deep Learning models became too heavy to deploy.
We propose a shallow bidirectional network based on predictive coding theory and dynamic early exiting for halting further computations.
We achieve comparable accuracy to VGG-16 in image classification on CIFAR-10 with fewer parameters and less computational complexity.
arXiv Detail & Related papers (2023-09-05T08:00:01Z) - Model Blending for Text Classification [0.15229257192293197]
We try reducing the complexity of state of the art LSTM models for natural language tasks such as text classification, by distilling their knowledge to CNN based models, thus reducing the inference time(or latency) during testing.
arXiv Detail & Related papers (2022-08-05T05:07:45Z) - Object Detection with Spiking Neural Networks on Automotive Event Data [0.0]
We propose to train spiking neural networks (SNNs) directly on data coming from event cameras to design fast and efficient automotive embedded applications.
In this paper, we conducted experiments on two automotive event datasets, establishing new state-of-the-art classification results for spiking neural networks.
arXiv Detail & Related papers (2022-05-09T14:39:47Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
We propose a time estimation framework to decouple the architectural search from the target hardware.
The proposed methodology extracts a set of models from micro- kernel and multi-layer benchmarks and generates a stacked model for mapping and network execution time estimation.
We compare estimation accuracy and fidelity of the generated mixed models, statistical models with the roofline model, and a refined roofline model for evaluation.
arXiv Detail & Related papers (2021-05-07T11:39:05Z) - Learning from Event Cameras with Sparse Spiking Convolutional Neural
Networks [0.0]
Convolutional neural networks (CNNs) are now the de facto solution for computer vision problems.
We propose an end-to-end biologically inspired approach using event cameras and spiking neural networks (SNNs)
Our method enables the training of sparse spiking neural networks directly on event data, using the popular deep learning framework PyTorch.
arXiv Detail & Related papers (2021-04-26T13:52:01Z) - Binary Graph Neural Networks [69.51765073772226]
Graph Neural Networks (GNNs) have emerged as a powerful and flexible framework for representation learning on irregular data.
In this paper, we present and evaluate different strategies for the binarization of graph neural networks.
We show that through careful design of the models, and control of the training process, binary graph neural networks can be trained at only a moderate cost in accuracy on challenging benchmarks.
arXiv Detail & Related papers (2020-12-31T18:48:58Z) - ShiftAddNet: A Hardware-Inspired Deep Network [87.18216601210763]
ShiftAddNet is an energy-efficient multiplication-less deep neural network.
It leads to both energy-efficient inference and training, without compromising expressive capacity.
ShiftAddNet aggressively reduces over 80% hardware-quantified energy cost of DNNs training and inference, while offering comparable or better accuracies.
arXiv Detail & Related papers (2020-10-24T05:09:14Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.