Quantization-aware Neural Architectural Search for Intrusion Detection
- URL: http://arxiv.org/abs/2311.04194v2
- Date: Sat, 2 Mar 2024 04:20:10 GMT
- Title: Quantization-aware Neural Architectural Search for Intrusion Detection
- Authors: Rabin Yu Acharya, Laurens Le Jeune, Nele Mentens, Fatemeh Ganji, Domenic Forte,
- Abstract summary: We present a design methodology that automatically trains and evolves quantized neural network (NN) models that are a thousand times smaller than state-of-the-art NNs.
The number of LUTs utilized by this network when deployed to an FPGA is between 2.3x and 8.5x smaller with performance comparable to prior work.
- Score: 5.010685611319813
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deploying machine learning-based intrusion detection systems (IDSs) on hardware devices is challenging due to their limited computational resources, power consumption, and network connectivity. Hence, there is a significant need for robust, deep learning models specifically designed with such constraints in mind. In this paper, we present a design methodology that automatically trains and evolves quantized neural network (NN) models that are a thousand times smaller than state-of-the-art NNs but can efficiently analyze network data for intrusion at high accuracy. In this regard, the number of LUTs utilized by this network when deployed to an FPGA is between 2.3x and 8.5x smaller with performance comparable to prior work.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - EvSegSNN: Neuromorphic Semantic Segmentation for Event Data [0.6138671548064356]
EvSegSNN is a biologically plausible encoder-decoder U-shaped architecture relying on Parametric Leaky Integrate and Fire neurons.
We introduce an end-to-end biologically inspired semantic segmentation approach by combining Spiking Neural Networks with event cameras.
Experiments conducted on DDD17 demonstrate that EvSegSNN outperforms the closest state-of-the-art model in terms of MIoU.
arXiv Detail & Related papers (2024-06-20T10:36:24Z) - Dynamic Early Exiting Predictive Coding Neural Networks [3.542013483233133]
With the urge for smaller and more accurate devices, Deep Learning models became too heavy to deploy.
We propose a shallow bidirectional network based on predictive coding theory and dynamic early exiting for halting further computations.
We achieve comparable accuracy to VGG-16 in image classification on CIFAR-10 with fewer parameters and less computational complexity.
arXiv Detail & Related papers (2023-09-05T08:00:01Z) - Low Precision Quantization-aware Training in Spiking Neural Networks
with Differentiable Quantization Function [0.5046831208137847]
This work aims to bridge the gap between recent progress in quantized neural networks and spiking neural networks.
It presents an extensive study on the performance of the quantization function, represented as a linear combination of sigmoid functions.
The presented quantization function demonstrates the state-of-the-art performance on four popular benchmarks.
arXiv Detail & Related papers (2023-05-30T09:42:05Z) - Fluid Batching: Exit-Aware Preemptive Serving of Early-Exit Neural
Networks on Edge NPUs [74.83613252825754]
"smart ecosystems" are being formed where sensing happens concurrently rather than standalone.
This is shifting the on-device inference paradigm towards deploying neural processing units (NPUs) at the edge.
We propose a novel early-exit scheduling that allows preemption at run time to account for the dynamicity introduced by the arrival and exiting processes.
arXiv Detail & Related papers (2022-09-27T15:04:01Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z) - CondenseNeXt: An Ultra-Efficient Deep Neural Network for Embedded
Systems [0.0]
A Convolutional Neural Network (CNN) is a class of Deep Neural Network (DNN) widely used in the analysis of visual images captured by an image sensor.
In this paper, we propose a neoteric variant of deep convolutional neural network architecture to ameliorate the performance of existing CNN architectures for real-time inference on embedded systems.
arXiv Detail & Related papers (2021-12-01T18:20:52Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
This paper explores a novel frequency-aware dynamic network for dividing the input into multiple parts according to its coefficients in the discrete cosine transform (DCT) domain.
In practice, the high-frequency part will be processed using expensive operations and the lower-frequency part is assigned with cheap operations to relieve the computation burden.
Experiments conducted on benchmark SISR models and datasets show that the frequency-aware dynamic network can be employed for various SISR neural architectures.
arXiv Detail & Related papers (2021-03-15T12:54:26Z) - MS-RANAS: Multi-Scale Resource-Aware Neural Architecture Search [94.80212602202518]
We propose Multi-Scale Resource-Aware Neural Architecture Search (MS-RANAS)
We employ a one-shot architecture search approach in order to obtain a reduced search cost.
We achieve state-of-the-art results in terms of accuracy-speed trade-off.
arXiv Detail & Related papers (2020-09-29T11:56:01Z) - Efficient Synthesis of Compact Deep Neural Networks [17.362146401041528]
Deep neural networks (DNNs) have been deployed in myriad machine learning applications.
These large, deep models are often unsuitable for real-world applications, due to their massive computational cost, high memory bandwidth, and long latency.
In this paper, we review major approaches for automatically synthesizing compact, yet accurate, DNN/LSTM models suitable for real-world applications.
arXiv Detail & Related papers (2020-04-18T21:20:04Z) - DepthNet Nano: A Highly Compact Self-Normalizing Neural Network for
Monocular Depth Estimation [76.90627702089357]
DepthNet Nano is a compact deep neural network for monocular depth estimation designed using a human machine collaborative design strategy.
The proposed DepthNet Nano possesses a highly efficient network architecture, while still achieving comparable performance with state-of-the-art networks.
arXiv Detail & Related papers (2020-04-17T00:41:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.