論文の概要: Device Authentication Codes based on RF Fingerprinting using Deep
Learning
- arxiv url: http://arxiv.org/abs/2004.08742v1
- Date: Sun, 19 Apr 2020 01:50:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-12 00:40:42.112320
- Title: Device Authentication Codes based on RF Fingerprinting using Deep
Learning
- Title(参考訳): 深層学習を用いたrf指紋認証に基づくデバイス認証コード
- Authors: Joshua Bassey, Xiangfang Li, Lijun Qian
- Abstract要約: Device Authentication Code (DAC) は、その無線周波数(RF)シグネチャを利用して、IoTデバイスを無線インターフェースで認証する新しい方法である。
DACは,任意の無線機器に特有の有能な特徴を抽出することにより,デバイス偽造を防止することができることを示す。
- 参考スコア(独自算出の注目度): 2.980018103007841
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose Device Authentication Code (DAC), a novel method
for authenticating IoT devices with wireless interface by exploiting their
radio frequency (RF) signatures. The proposed DAC is based on RF
fingerprinting, information theoretic method, feature learning, and
discriminatory power of deep learning. Specifically, an autoencoder is used to
automatically extract features from the RF traces, and the reconstruction error
is used as the DAC and this DAC is unique to the device and the particular
message of interest. Then Kolmogorov-Smirnov (K-S) test is used to match the
distribution of the reconstruction error generated by the autoencoder and the
received message, and the result will determine whether the device of interest
belongs to an authorized user. We validate this concept on two experimentally
collected RF traces from six ZigBee and five universal software defined radio
peripheral (USRP) devices, respectively. The traces span a range of Signalto-
Noise Ratio by varying locations and mobility of the devices and channel
interference and noise to ensure robustness of the model. Experimental results
demonstrate that DAC is able to prevent device impersonation by extracting
salient features that are unique to any wireless device of interest and can be
used to identify RF devices. Furthermore, the proposed method does not need the
RF traces of the intruder during model training yet be able to identify devices
not seen during training, which makes it practical.
- Abstract(参考訳): 本稿では,その無線周波数(RF)シグネチャを利用して,無線インターフェースでIoTデバイスを認証する新しい手法であるデバイス認証コード(DAC)を提案する。
提案するDACは,RFフィンガープリント,情報理論,特徴学習,深層学習の識別力に基づく。
具体的には、RFトレースから特徴を自動的に抽出するためにオートエンコーダを使用し、再構成エラーをDACとして使用し、このDACはデバイスと特定の関心のメッセージに固有のものである。
次に、自己エンコーダが生成した再構成エラーの分布と受信メッセージとの一致をコルモゴロフ・スミルノフ検定(K-S)を用いて、興味のある装置が認証ユーザに属するか否かを判定する。
6個のZigBeeと5つのユニバーサルソフトウェア定義無線周辺機器から得られた2つのRFトレースに対して,この概念を検証した。
トレースは、デバイスのさまざまな位置とモビリティ、およびモデルの堅牢性を保証するためのチャネル干渉とノイズによって、SignaltoNoise比の範囲にまたがる。
実験の結果,DACは興味のある無線デバイスに特有の特徴を抽出し,RFデバイスを特定することでデバイス偽造を防止することができることがわかった。
さらに,本手法では,モデルトレーニング中に侵入者のRFトレースを必要とせず,トレーニング中に見えないデバイスを識別できるので,実用的である。
関連論文リスト
- RF Challenge: The Data-Driven Radio Frequency Signal Separation Challenge [66.33067693672696]
本稿では、新しいデータ駆動手法を用いて、高周波信号における干渉拒否の重大な問題に対処する。
まず、干渉除去アルゴリズムの開発と解析の基礎となる洞察に富んだ信号モデルを提案する。
第2に,さまざまなRF信号とコードテンプレートを備えた公開データセットであるRF Challengeを紹介する。
第3に,UNetやWaveNetなどのアーキテクチャにおいて,新しいAIに基づく拒絶アルゴリズムを提案し,その性能を8種類の信号混合タイプで評価する。
論文 参考訳(メタデータ) (2024-09-13T13:53:41Z) - Coarse-to-Fine Proposal Refinement Framework for Audio Temporal Forgery Detection and Localization [60.899082019130766]
本稿では、フレームレベル検出ネットワーク(FDN)と、音声の時間的偽造検出とローカライゼーションのための改良ネットワーク(PRN)を提案する。
FDNは、偽のフレーム間で情報的不整合の手がかりを抽出し、偽の領域を大まかに示すのに有用な識別的特徴を得る。
PRNは、FDNから派生した粗粒度の提案を洗練するために、信頼スコアと回帰オフセットを予測する責任がある。
論文 参考訳(メタデータ) (2024-07-23T15:07:52Z) - Erasing Radio Frequency Fingerprints via Active Adversarial Perturbation [19.88283575742985]
本稿では、パイロット信号データから機械学習モデルを訓練して識別する、一般的なRFフィンガープリントシナリオについて考察する。
新たな対向攻撃ソリューションは適切な摂動を生成するように設計されており、パイロット信号はハードウェアの特徴を隠蔽し、モデルを誤分類することができる。
大規模な実験結果から,RF指紋を効果的に消去し,ユーザのプライバシーを保護できることが示されている。
論文 参考訳(メタデータ) (2024-06-11T15:16:05Z) - Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
デバイスレスワイヤレスセンシングは、幅広い没入型人間機械対話型アプリケーションをサポートする可能性から、近年、大きな関心を集めている。
無線信号におけるデータの均一性と分散センシングにおけるデータプライバシ規制は、広域ネットワークシステムにおける無線センシングの広範な適用を妨げる主要な課題であると考えられている。
そこで本研究では,ラベル付きデータを使わずに,一箇所ないし限られた箇所で構築されたモデルを直接他の場所に転送できるゼロショット無線センシングソリューションを提案する。
論文 参考訳(メタデータ) (2023-12-08T13:50:30Z) - HiNoVa: A Novel Open-Set Detection Method for Automating RF Device
Authentication [9.571774189070531]
本稿では,畳み込みニューラルネットワーク(CNN)長短期記憶(LSTM)モデルにおける隠れ状態値のパターンに基づいた,新しいオープンセット検出手法を提案する。
我々のアプローチはLoRa、Wi-Fi、Wired-WiFiデータセットの精度-リコール曲線の領域を大幅に改善する。
論文 参考訳(メタデータ) (2023-05-16T16:47:02Z) - SignCRF: Scalable Channel-agnostic Data-driven Radio Authentication
System [17.391164797113134]
RFFDL(Radio Frequency Fingerprinting through Deep Learning)は、データ駆動型IoT認証技術である。
提案されているSignCRFは、スケーラブルで、チャネルに依存しない、データ駆動の無線認証プラットフォームである。
SignCRFは,WiFiおよびLoRaデバイスの認証精度を最大5倍,8倍向上させることで,RFFDLの性能を著しく向上することを示した。
論文 参考訳(メタデータ) (2023-03-21T21:11:02Z) - One-shot Generative Distribution Matching for Augmented RF-based UAV Identification [0.0]
この研究は、限られたRF環境下でRFフィンガープリントを用いて無人航空機(UAV)を特定するという課題に対処する。
RF信号の複雑さと可変性は、環境干渉やハードウェアの不完全性の影響を受け、従来のRFベースの識別手法を効果的にしないことが多い。
変換されたRF信号を増強するためのワンショット生成法は、UAV識別を著しく改善する。
論文 参考訳(メタデータ) (2023-01-20T02:35:43Z) - Disentangled Representation Learning for RF Fingerprint Extraction under
Unknown Channel Statistics [77.13542705329328]
本稿では,まず,不整合表現学習(DRL)の枠組みを提案し,入力信号を逆学習によりデバイス関連成分とデバイス関連成分に分解する。
提案フレームワークにおける暗黙的なデータ拡張は、デバイス非関連チャネル統計の過度な適合を避けるために、RFF抽出器に正規化を課す。
実験により、DR-RFFと呼ばれる提案手法は、未知の複雑な伝播環境に対する一般化可能性の観点から従来の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2022-08-04T15:46:48Z) - GraSens: A Gabor Residual Anti-aliasing Sensing Framework for Action
Recognition using WiFi [52.530330427538885]
WiFiベースのヒューマンアクション認識(HAR)は、スマートリビングやリモート監視といったアプリケーションにおいて、有望なソリューションと見なされている。
本稿では,無線機器からのWiFi信号を用いた動作を,多様なシナリオで直接認識する,エンド・ツー・エンドのGabor残差検知ネットワーク(GraSens)を提案する。
論文 参考訳(メタデータ) (2022-05-24T10:20:16Z) - Comprehensive RF Dataset Collection and Release: A Deep Learning-Based
Device Fingerprinting Use Case [10.698553177585973]
我々は、USRP B210受信機を用いて25種類のLoRa対応IoT伝送デバイスから収集した大規模なRFフィンガープリントデータセットを提示、リリースする。
我々のデータセットは、多数のSigMF準拠バイナリファイルからなり、I/Q時間領域のサンプルと対応するFFTベースのLoRa送信ファイルで構成されている。
論文 参考訳(メタデータ) (2022-01-06T19:07:57Z) - A Generalizable Model-and-Data Driven Approach for Open-Set RFF
Authentication [74.63333951647581]
高周波指紋(RFF)は、低コストな物理層認証を実現するための有望な解決策である。
RFF抽出と識別のために機械学習に基づく手法が提案されている。
生受信信号からRFFを抽出するエンド・ツー・エンドのディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-10T03:59:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。