論文の概要: HiNoVa: A Novel Open-Set Detection Method for Automating RF Device
Authentication
- arxiv url: http://arxiv.org/abs/2305.09594v1
- Date: Tue, 16 May 2023 16:47:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-17 14:00:33.888263
- Title: HiNoVa: A Novel Open-Set Detection Method for Automating RF Device
Authentication
- Title(参考訳): HiNoVa:RFデバイス認証を自動化する新しいオープンセット検出方法
- Authors: Luke Puppo, Weng-Keen Wong, Bechir Hamdaoui, Abdurrahman Elmaghbub
- Abstract要約: 本稿では,畳み込みニューラルネットワーク(CNN)長短期記憶(LSTM)モデルにおける隠れ状態値のパターンに基づいた,新しいオープンセット検出手法を提案する。
我々のアプローチはLoRa、Wi-Fi、Wired-WiFiデータセットの精度-リコール曲線の領域を大幅に改善する。
- 参考スコア(独自算出の注目度): 9.571774189070531
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: New capabilities in wireless network security have been enabled by deep
learning, which leverages patterns in radio frequency (RF) data to identify and
authenticate devices. Open-set detection is an area of deep learning that
identifies samples captured from new devices during deployment that were not
part of the training set. Past work in open-set detection has mostly been
applied to independent and identically distributed data such as images. In
contrast, RF signal data present a unique set of challenges as the data forms a
time series with non-linear time dependencies among the samples. We introduce a
novel open-set detection approach based on the patterns of the hidden state
values within a Convolutional Neural Network (CNN) Long Short-Term Memory
(LSTM) model. Our approach greatly improves the Area Under the Precision-Recall
Curve on LoRa, Wireless-WiFi, and Wired-WiFi datasets, and hence, can be used
successfully to monitor and control unauthorized network access of wireless
devices.
- Abstract(参考訳): 無線ネットワークセキュリティの新機能は、無線周波数(RF)データのパターンを利用してデバイスを特定し認証するディープラーニングによって実現されている。
オープンセット検出(open-set detection)は、トレーニングセットの一部ではないデプロイメント中に、新たなデバイスから取得したサンプルを識別するディープラーニングの領域である。
オープンセット検出における過去の研究は、主に画像のような独立で同一の分散データに適用されてきた。
対照的に、RF信号データはサンプル間で非線形時間に依存する時系列を形成するため、ユニークな課題の集合を示す。
本稿では,畳み込みニューラルネットワーク(CNN)長短期記憶(LSTM)モデルにおける隠れ状態値のパターンに基づいた,新しいオープンセット検出手法を提案する。
提案手法は,LoRa,Wi-Fi,Wired-Wi-Fiのデータセット上での精度-リコール曲線の領域を大幅に改善し,無線機器の未許可ネットワークアクセスの監視と制御に有効である。
関連論文リスト
- Enhanced Real-Time Threat Detection in 5G Networks: A Self-Attention RNN Autoencoder Approach for Spectral Intrusion Analysis [8.805162150763847]
本稿では,自己認識機構とリカレントニューラルネットワーク(RNN)に基づくオートエンコーダを統合する実験モデルを提案する。
本手法は, 時系列解析, プロセス・イン・フェイズ, および二次(I/Q)サンプルを用いて, ジャミング攻撃の可能性を示す不規則性を同定する。
モデルアーキテクチャは自己アテンション層で拡張され、RNNオートエンコーダの機能を拡張する。
論文 参考訳(メタデータ) (2024-11-05T07:01:15Z) - Frequency-Aware Deepfake Detection: Improving Generalizability through
Frequency Space Learning [81.98675881423131]
この研究は、目に見えないディープフェイク画像を効果的に識別できるユニバーサルディープフェイク検出器を開発するという課題に対処する。
既存の周波数ベースのパラダイムは、偽造検出のためにGANパイプラインのアップサンプリング中に導入された周波数レベルのアーティファクトに依存している。
本稿では、周波数領域学習を中心にしたFreqNetと呼ばれる新しい周波数認識手法を導入し、ディープフェイク検出器の一般化性を高めることを目的とする。
論文 参考訳(メタデータ) (2024-03-12T01:28:00Z) - Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
デバイスレスワイヤレスセンシングは、幅広い没入型人間機械対話型アプリケーションをサポートする可能性から、近年、大きな関心を集めている。
無線信号におけるデータの均一性と分散センシングにおけるデータプライバシ規制は、広域ネットワークシステムにおける無線センシングの広範な適用を妨げる主要な課題であると考えられている。
そこで本研究では,ラベル付きデータを使わずに,一箇所ないし限られた箇所で構築されたモデルを直接他の場所に転送できるゼロショット無線センシングソリューションを提案する。
論文 参考訳(メタデータ) (2023-12-08T13:50:30Z) - Self-Supervised RF Signal Representation Learning for NextG Signal
Classification with Deep Learning [5.624291722263331]
自己教師付き学習は、無線周波数(RF)信号自体から有用な表現を学習することを可能にする。
自己教師型学習による信号表現の学習により,AMRのサンプル効率(精度向上に必要なラベル付きサンプル数)を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2022-07-07T02:07:03Z) - Deep Federated Anomaly Detection for Multivariate Time Series Data [93.08977495974978]
本稿では,Fed-ExDNN(Federated Exemplar-based Deep Neural Network)を用いて,異なるエッジデバイス上での多変量時系列データの異常検出を行う。
ExDNNとFed-ExDNNは、最先端の異常検出アルゴリズムやフェデレーション学習技術より優れていることを示す。
論文 参考訳(メタデータ) (2022-05-09T05:06:58Z) - Comprehensive RF Dataset Collection and Release: A Deep Learning-Based
Device Fingerprinting Use Case [10.698553177585973]
我々は、USRP B210受信機を用いて25種類のLoRa対応IoT伝送デバイスから収集した大規模なRFフィンガープリントデータセットを提示、リリースする。
我々のデータセットは、多数のSigMF準拠バイナリファイルからなり、I/Q時間領域のサンプルと対応するFFTベースのLoRa送信ファイルで構成されている。
論文 参考訳(メタデータ) (2022-01-06T19:07:57Z) - Robust Semi-supervised Federated Learning for Images Automatic
Recognition in Internet of Drones [57.468730437381076]
プライバシー保護型UAV画像認識のための半教師付きフェデレートラーニング(SSFL)フレームワークを提案する。
異なるカメラモジュールを使用したUAVによって収集されたローカルデータの数、特徴、分布には大きな違いがある。
本稿では,クライアントがトレーニングに参加する頻度,すなわちFedFreqアグリゲーションルールに基づくアグリゲーションルールを提案する。
論文 参考訳(メタデータ) (2022-01-03T16:49:33Z) - Three-Way Deep Neural Network for Radio Frequency Map Generation and
Source Localization [67.93423427193055]
空間、時間、周波数領域にわたる無線スペクトルのモニタリングは、5Gと6G以上の通信技術において重要な特徴となる。
本稿では,空間領域全体にわたる不規則分散計測を補間するGAN(Generative Adversarial Network)機械学習モデルを提案する。
論文 参考訳(メタデータ) (2021-11-23T22:25:10Z) - From One to Many: A Deep Learning Coincident Gravitational-Wave Search [58.720142291102135]
単一検出器からの非スピン型二元ブラックホールデータに基づいてトレーニングされたニューラルネットワークを用いて、二元ブラックホールの融合から重力波を2検出器で探索する。
これらの単純な2検出器ネットワークはいずれも、検出器のデータに個別にネットワークを適用するよりも感度を向上させることができない。
論文 参考訳(メタデータ) (2021-08-24T13:25:02Z) - A Photonic-Circuits-Inspired Compact Network: Toward Real-Time Wireless
Signal Classification at the Edge [3.841495731646297]
大規模な機械学習モデルでは、レイテンシに敏感な下流タスクのためにエッジデバイス上で実装することが難しくなる可能性がある。
無線通信システムでは、ミリ秒以下のスケールでのMLデータ処理により、リアルタイムなネットワーク監視が可能となる。
本稿では,フォトニック・ハードウエアにインスパイアされたリカレントニューラルネットワークモデルからなる,コンパクトなディープ・ネットワークを提案する。
論文 参考訳(メタデータ) (2021-06-25T19:55:41Z) - Device Authentication Codes based on RF Fingerprinting using Deep
Learning [2.980018103007841]
Device Authentication Code (DAC) は、その無線周波数(RF)シグネチャを利用して、IoTデバイスを無線インターフェースで認証する新しい方法である。
DACは,任意の無線機器に特有の有能な特徴を抽出することにより,デバイス偽造を防止することができることを示す。
論文 参考訳(メタデータ) (2020-04-19T01:50:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。