論文の概要: Space of Functions Computed by Deep-Layered Machines
- arxiv url: http://arxiv.org/abs/2004.08930v3
- Date: Wed, 14 Oct 2020 01:36:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-12 00:06:05.816391
- Title: Space of Functions Computed by Deep-Layered Machines
- Title(参考訳): 深層機械で計算した関数の空間
- Authors: Alexander Mozeika and Bo Li and David Saad
- Abstract要約: 深層ニューラルネットワークやブール回路を含むランダム層マシンによって計算される関数の空間について検討する。
繰り返しおよび層依存アーキテクチャ上で計算されたブール関数の分布を調べた結果、両方のモデルで同じであることが判明した。
- 参考スコア(独自算出の注目度): 74.13735716675987
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the space of functions computed by random-layered machines,
including deep neural networks and Boolean circuits. Investigating the
distribution of Boolean functions computed on the recurrent and layer-dependent
architectures, we find that it is the same in both models. Depending on the
initial conditions and computing elements used, we characterize the space of
functions computed at the large depth limit and show that the macroscopic
entropy of Boolean functions is either monotonically increasing or decreasing
with the growing depth.
- Abstract(参考訳): 深層ニューラルネットワークやブール回路を含むランダム層マシンによって計算される関数の空間について検討する。
繰り返しおよび層依存アーキテクチャ上で計算されたブール関数の分布を調べた結果、両方のモデルで同じであることが判明した。
使用する初期条件や計算要素によって,大深度限界で計算される関数の空間を特徴付けるとともに,ブール関数のマクロエントロピーが単調に増大するか,あるいは増大とともに減少しているかを示す。
関連論文リスト
- Spherical Analysis of Learning Nonlinear Functionals [10.785977740158193]
本稿では,球面上の関数の集合上で定義される関数について考察する。
深部ReLUニューラルネットワークの近似能力をエンコーダデコーダフレームワークを用いて検討した。
論文 参考訳(メタデータ) (2024-10-01T20:10:00Z) - Approximation of RKHS Functionals by Neural Networks [30.42446856477086]
ニューラルネットワークを用いたHilbert空間(RKHS)を再現するカーネル上の関数の近似について検討する。
逆多重四元数、ガウス、ソボレフのカーネルによって誘導される場合の明示的な誤差境界を導出する。
ニューラルネットワークが回帰マップを正確に近似できることを示すため,機能回帰に本研究の成果を適用した。
論文 参考訳(メタデータ) (2024-03-18T18:58:23Z) - Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization [73.80101701431103]
線形化ラプラス近似(LLA)はベイズニューラルネットワークの構築に有効で効率的であることが示されている。
ベイズ最適化におけるLLAの有用性について検討し,その性能と柔軟性を強調した。
論文 参考訳(メタデータ) (2023-04-17T14:23:43Z) - Provable Data Subset Selection For Efficient Neural Network Training [73.34254513162898]
本稿では,任意の放射基底関数ネットワーク上での入力データの損失を近似する,emphRBFNNのコアセットを構成するアルゴリズムについて紹介する。
次に、一般的なネットワークアーキテクチャやデータセット上で、関数近似とデータセットサブセットの選択に関する経験的評価を行う。
論文 参考訳(メタデータ) (2023-03-09T10:08:34Z) - Spontaneous Emergence of Computation in Network Cascades [0.7734726150561089]
我々は、接続性とアンタゴニズム(阻害)の関数として、閾値ネットワークで複雑なブール関数の計算が自然に発生することを示した。
また、ここで観察される抑制の最適割合は、最適な情報処理に関する計算神経科学の結果を支持することも示している。
論文 参考訳(メタデータ) (2022-04-25T20:35:09Z) - Neural Network Approximation of Refinable Functions [8.323468006516018]
本研究では, 深部ReLUネットワークの出力幅が一定であり, 精度指数で深部を増大させることにより, 精錬可能関数が近似可能であることを示す。
本研究は,ウェーブレットの標準構成に使用される関数と,コンピュータ支援幾何設計における部分分割アルゴリズムを用いて構築される関数に適用する。
論文 参考訳(メタデータ) (2021-07-28T06:45:36Z) - Compressing Deep ODE-Nets using Basis Function Expansions [105.05435207079759]
重みの定式化を基底関数の線形結合を用いた連続深度関数とみなす。
この観点では、ほぼ最先端の性能を維持しながら、再トレーニングすることなく、ベースの変化によって重みを圧縮することができる。
これにより、推論時間とメモリフットプリントの両方が削減され、計算環境間の高速で厳密な適応が可能となる。
論文 参考訳(メタデータ) (2021-06-21T03:04:51Z) - Representation Theorem for Matrix Product States [1.7894377200944511]
本稿では, 行列積状態(MPS)の普遍的表現能力について, 関数と連続関数の観点から検討する。
任意のゲートに対して対応するMPS構造の構築方法を提供することにより、MPSが任意の機能を正確に実現できることを示した。
我々は,MPSとニューラルネットワークの関係について検討し,スケール不変なシグモダル関数を持つMPSが一層ニューラルネットワークと等価であることを示す。
論文 参考訳(メタデータ) (2021-03-15T11:06:54Z) - On Function Approximation in Reinforcement Learning: Optimism in the
Face of Large State Spaces [208.67848059021915]
強化学習のコアにおける探索・探索トレードオフについて検討する。
特に、関数クラス $mathcalF$ の複雑さが関数の複雑さを特徴づけていることを証明する。
私たちの後悔の限界はエピソードの数とは無関係です。
論文 参考訳(メタデータ) (2020-11-09T18:32:22Z) - Hyperbolic Neural Networks++ [66.16106727715061]
ニューラルネットワークの基本成分を1つの双曲幾何モデル、すなわちポアンカーの球モデルで一般化する。
実験により, 従来の双曲成分と比較してパラメータ効率が優れ, ユークリッド成分よりも安定性と性能が優れていた。
論文 参考訳(メタデータ) (2020-06-15T08:23:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。