論文の概要: Extending DeepSDF for automatic 3D shape retrieval and similarity
transform estimation
- arxiv url: http://arxiv.org/abs/2004.09048v3
- Date: Mon, 26 Oct 2020 05:01:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-11 18:36:38.742567
- Title: Extending DeepSDF for automatic 3D shape retrieval and similarity
transform estimation
- Title(参考訳): deepsdfの拡張による3次元形状の自動検索と類似度変換推定
- Authors: Oladapo Afolabi, Allen Y. Yang, S. Shankar Sastry
- Abstract要約: コンピュータグラフィックスとコンピュータビジョンの最近の進歩は、3次元形状にディープニューラルネットワークモデルを適用することに成功している。
形状および類似度変換パラメータを共同で推定することにより,この問題を克服するための定式化を提案する。
- 参考スコア(独自算出の注目度): 3.8213230386700614
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in computer graphics and computer vision have found
successful application of deep neural network models for 3D shapes based on
signed distance functions (SDFs) that are useful for shape representation,
retrieval, and completion. However, this approach has been limited by the need
to have query shapes in the same canonical scale and pose as those observed
during training, restricting its effectiveness on real world scenes. We present
a formulation to overcome this issue by jointly estimating shape and similarity
transform parameters. We conduct experiments to demonstrate the effectiveness
of this formulation on synthetic and real datasets and report favorable
comparisons to the state of the art. Finally, we also emphasize the viability
of this approach as a form of 3D model compression.
- Abstract(参考訳): 近年のコンピュータグラフィックスとコンピュータビジョンの進歩により、形状表現、検索、補完に有用な符号付き距離関数(sdfs)に基づく3次元形状へのディープニューラルネットワークモデルの応用が成功している。
しかしながら、このアプローチは、トレーニング中に観察されたものと同じ正準スケールのクエリ形状とポーズを持つ必要があり、現実世界のシーンでの有効性が制限されているため、制限されている。
形状および類似度変換パラメータを共同で推定することにより,この問題を克服するための定式化を提案する。
本研究では, この定式化の有効性を, 合成および実データに示す実験を行い, 現状との比較を報告する。
最後に,3次元モデル圧縮の形式として,このアプローチの実用性を強調した。
関連論文リスト
- VortSDF: 3D Modeling with Centroidal Voronoi Tesselation on Signed Distance Field [5.573454319150408]
四面体グリッド上での3次元形状特性を推定するために,明示的なSDFフィールドと浅いカラーネットワークを組み合わせた体積最適化フレームワークを提案する。
Chamfer統計による実験結果は、オブジェクト、オープンシーン、人間などの様々なシナリオにおいて、前例のない復元品質でこのアプローチを検証する。
論文 参考訳(メタデータ) (2024-07-29T09:46:39Z) - Zero123-6D: Zero-shot Novel View Synthesis for RGB Category-level 6D Pose Estimation [66.3814684757376]
本研究は,RGB 6Dのカテゴリレベルでのポーズ推定を向上するための拡散モデルに基づく新規ビュー合成器の実用性を示す最初の研究であるZero123-6Dを示す。
本手法は,データ要求の低減,ゼロショットカテゴリレベルの6Dポーズ推定タスクにおける深度情報の必要性の除去,およびCO3Dデータセットの実験により定量的に示された性能の向上を示す。
論文 参考訳(メタデータ) (2024-03-21T10:38:18Z) - SC-Diff: 3D Shape Completion with Latent Diffusion Models [4.913210912019975]
本稿では, 形状の完成に最適化された3次元潜在拡散モデルを用いて, 3次元形状完備化手法を提案する。
本手法は,空間的コンディショニングとクロスアテンションによる画像ベースコンディショニングを,キャプチャー部分スキャンからの3次元特徴の統合により組み合わせたものである。
論文 参考訳(メタデータ) (2024-03-19T06:01:11Z) - Volumetric Semantically Consistent 3D Panoptic Mapping [77.13446499924977]
非構造環境における自律エージェントに適したセマンティック3Dマップを生成することを目的としたオンライン2次元から3次元のセマンティック・インスタンスマッピングアルゴリズムを提案する。
マッピング中にセマンティック予測の信頼性を統合し、セマンティックおよびインスタンス一貫性のある3D領域を生成する新しい方法を導入する。
提案手法は,パブリックな大規模データセット上での最先端の精度を実現し,多くの広く使用されているメトリクスを改善した。
論文 参考訳(メタデータ) (2023-09-26T08:03:10Z) - Towards Confidence-guided Shape Completion for Robotic Applications [6.940242990198]
深層学習は、部分的な視覚データから完全な3Dオブジェクト表現を推測する効果的な方法として牽引され始めている。
本稿では,各再構成点に対する信頼度を示す暗黙の3次元表現に基づくオブジェクト形状完備化手法を提案する。
再構成された形状と地上の真実を比較し,ロボットの把握パイプラインに形状完了アルゴリズムを配置することにより,我々のアプローチを実験的に検証する。
論文 参考訳(メタデータ) (2022-09-09T13:48:24Z) - LatentHuman: Shape-and-Pose Disentangled Latent Representation for Human
Bodies [78.17425779503047]
本稿では,人体に対する新しい暗黙の表現法を提案する。
完全に微分可能で、非交叉形状で最適化可能であり、潜在空間を映し出す。
我々のモデルは、よく設計された損失を伴う、水密でない生データを直接訓練し、微調整することができる。
論文 参考訳(メタデータ) (2021-11-30T04:10:57Z) - Scene Synthesis via Uncertainty-Driven Attribute Synchronization [52.31834816911887]
本稿では,3次元シーンの多様な特徴パターンを捉えるニューラルシーン合成手法を提案する。
提案手法は,ニューラルネットワークと従来のシーン合成手法の双方の長所を結合する。
論文 参考訳(メタデータ) (2021-08-30T19:45:07Z) - Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D
Shapes [77.6741486264257]
本稿では,高忠実度ニューラルネットワークSDFのリアルタイムレンダリングを可能にする,効率的なニューラル表現を提案する。
我々の表現は、以前の作品に比べてレンダリング速度の点で2~3桁の効率であることを示す。
論文 参考訳(メタデータ) (2021-01-26T18:50:22Z) - Synthetic Training for Accurate 3D Human Pose and Shape Estimation in
the Wild [27.14060158187953]
本稿では,RGB画像からの単眼立体形状とポーズ推定の問題に対処する。
本研究では, シルエットや2次元関節などのプロキシ表現を形状と回帰ニューラルネットワークの入力として利用するシステムであるSTRAPSを提案する。
STRAPSは形状予測精度においてSSP-3Dの他の最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-09-21T16:39:04Z) - Shape Prior Deformation for Categorical 6D Object Pose and Size
Estimation [62.618227434286]
RGB-D画像から見えないオブジェクトの6Dポーズとサイズを復元する新しい学習手法を提案する。
本研究では,事前学習したカテゴリ形状からの変形を明示的にモデル化することにより,3次元オブジェクトモデルを再構築するディープネットワークを提案する。
論文 参考訳(メタデータ) (2020-07-16T16:45:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。