BEC immersed in a Fermi sea: Theory of static and dynamic behavior
across phase separation
- URL: http://arxiv.org/abs/2004.09227v1
- Date: Fri, 17 Apr 2020 15:03:27 GMT
- Title: BEC immersed in a Fermi sea: Theory of static and dynamic behavior
across phase separation
- Authors: Bo Huang
- Abstract summary: We study the static and dynamic behavior of a BEC immersed in a large Fermi sea of ultracold atoms under conditions of tunable interspecies interaction.
We develop mean-field models to simulate the system over a wide range of repulsion strength.
We show that the mediated interaction between bosons induced by the Fermi sea can be understood as an adiabatic second-order mean-field effect.
- Score: 1.7990829163162367
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We theoretically study the static and dynamic behavior of a BEC immersed in a
large Fermi sea of ultracold atoms under conditions of tunable interspecies
interaction. The degenerate Bose-Fermi mixture is kept in an elongated trap,
typical for a single-beam optical dipole trap. We focus on the case of
repulsive Bose-Fermi interaction and develop mean-field models to simulate the
system over a wide range of repulsion strength. We further get analytical
solutions in the regimes of phase separation and weak interaction. We obtain
static density profiles and the frequency of the radial breathing mode, which
is an elementary dynamic phenomenon of the mixture. Our results unveil the
structure of the Bose-Fermi interface and describe the origin of the frequency
shift of the breathing mode when the components become phase-separated at
strong repulsion. We show that the mediated interaction between bosons induced
by the Fermi sea can be understood as an adiabatic second-order mean-field
effect, which is valid also beyond the weak-interaction regime for relevant
experimental conditions. These results are consistent with our recent
observations in a mixture of $^{41}$K and $^6$Li.
Related papers
- Optical signatures of dynamical excitonic condensates [38.42595111719131]
We show that optical spectroscopy can experimentally identify phase-trapped and phase-delocalized dynamical regimes of condensation.
In the weak-bias regime, the trapped dynamics of the order parameter's phase lead to an in-gap absorption line at a frequency almost independent of the bias voltage.
Close to the transition between the trapped and freely oscillating states, we find a strong response upon application of a weak electric probe field.
arXiv Detail & Related papers (2024-10-29T15:16:44Z) - Dynamical phases of a BEC in a bad optical cavity at optomechanical resonance [0.0]
We study the emergence of dynamical phases of a Bose-Einstein condensate that is optomechanically coupled to a dissipative cavity mode.
We derive an effective model for the atomic motion, where the cavity degrees of freedom are eliminated.
We show that such limit cycle solutions are metastable configurations of the adiabatic model.
arXiv Detail & Related papers (2024-08-05T14:01:13Z) - Stability and decay of subradiant patterns in a quantum gas with photon-mediated interactions [34.82692226532414]
We study subradiance in a Bose-Einstein condensate positioned at the mode crossing of two optical cavities.
metastable density structures that suppress emission into one cavity mode prevent relaxation to the stationary, superradiant grating.
We reproduce these dynamics by a quantum mean field model, suggesting that subradiance shares characteristics with quasi-stationary states predicted in other long-range interacting systems.
arXiv Detail & Related papers (2024-07-12T12:47:07Z) - Bound impurities in a one-dimensional Bose lattice gas: low-energy properties and quench-induced dynamics [0.0]
We study two mobile bosonic impurities immersed in a one-dimensional optical lattice and interacting with a bosonic bath.
We consider the branch of repulsive interactions that induce the formation of bound impurities, akin to the bipolaron problem.
arXiv Detail & Related papers (2024-02-05T15:01:14Z) - Collective flow of fermionic impurities immersed in a Bose-Einstein Condensate [34.82692226532414]
We study the collective oscillations of spin-polarized fermionic impurities immersed in a Bose-Einstein condensate.
For strong interactions, the Fermi gas perfectly mimics the superfluid hydrodynamic modes of the condensate.
With an increasing number of bosonic thermal excitations, the dynamics of the impurities cross over from the collisionless to the hydrodynamic regime.
arXiv Detail & Related papers (2023-04-16T00:58:05Z) - Exploring phonon-like interactions in one-dimensional Bose-Fermi
mixtures [0.0]
We investigate a cold atomic Bose-Fermi mixture confined in an optical lattice potential solely affecting the bosons.
Under attractive Bose-Fermi interaction, the insulating phase may adopt a fermionic wedding-cake-like configuration.
For repulsive interaction, the trap destabilizes the Peierls phase, causing the two species to separate.
arXiv Detail & Related papers (2023-03-13T13:08:02Z) - Quantum critical behavior of entanglement in lattice bosons with
cavity-mediated long-range interactions [0.0]
We analyze the ground-state entanglement entropy of the extended Bose-Hubbard model with infinite-range interactions.
This model describes the low-energy dynamics of ultracold bosons tightly bound to an optical lattice and dispersively coupled to a cavity mode.
arXiv Detail & Related papers (2022-04-16T04:10:57Z) - Propagation of Many-body Localization in an Anderson Insulator [0.0]
Many-body localization (MBL) is an example of a dynamical phase of matter that avoids thermalization.
We consider the stability of an Anderson insulator with a finite density of particles interacting with a single mobile impurity.
arXiv Detail & Related papers (2021-09-15T14:40:25Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.