Language-agnostic Multilingual Modeling
- URL: http://arxiv.org/abs/2004.09571v1
- Date: Mon, 20 Apr 2020 18:57:43 GMT
- Title: Language-agnostic Multilingual Modeling
- Authors: Arindrima Datta, Bhuvana Ramabhadran, Jesse Emond, Anjuli Kannan,
Brian Roark
- Abstract summary: We build a language-agnostic multilingual ASR system which transforms all languages to one writing system through a many-to-one transliteration transducer.
We show with four Indic languages, namely, Hindi, Bengali, Tamil and Kannada, that the language-agnostic multilingual model achieves up to 10% relative reduction in Word Error Rate (WER) over a language-dependent multilingual model.
- Score: 23.06484126933893
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multilingual Automated Speech Recognition (ASR) systems allow for the joint
training of data-rich and data-scarce languages in a single model. This enables
data and parameter sharing across languages, which is especially beneficial for
the data-scarce languages. However, most state-of-the-art multilingual models
require the encoding of language information and therefore are not as flexible
or scalable when expanding to newer languages. Language-independent
multilingual models help to address this issue, and are also better suited for
multicultural societies where several languages are frequently used together
(but often rendered with different writing systems). In this paper, we propose
a new approach to building a language-agnostic multilingual ASR system which
transforms all languages to one writing system through a many-to-one
transliteration transducer. Thus, similar sounding acoustics are mapped to a
single, canonical target sequence of graphemes, effectively separating the
modeling and rendering problems. We show with four Indic languages, namely,
Hindi, Bengali, Tamil and Kannada, that the language-agnostic multilingual
model achieves up to 10% relative reduction in Word Error Rate (WER) over a
language-dependent multilingual model.
Related papers
- Linguistically-Informed Multilingual Instruction Tuning: Is There an Optimal Set of Languages to Tune? [0.0]
This study proposes a method to select languages for instruction tuning in a linguistically informed way.
We use a simple algorithm to choose diverse languages and test their effectiveness on various benchmarks and open-ended questions.
Our results show that this careful selection generally leads to better outcomes than choosing languages at random.
arXiv Detail & Related papers (2024-10-10T10:57:24Z) - A two-stage transliteration approach to improve performance of a multilingual ASR [1.9511556030544333]
This paper presents an approach to build a language-agnostic end-to-end model trained on a grapheme set.
We performed experiments with an end-to-end multilingual speech recognition system for two Indic languages.
arXiv Detail & Related papers (2024-10-09T05:30:33Z) - MYTE: Morphology-Driven Byte Encoding for Better and Fairer Multilingual Language Modeling [70.34758460372629]
We introduce a new paradigm that encodes the same information with segments of consistent size across diverse languages.
MYTE produces shorter encodings for all 99 analyzed languages.
This, in turn, improves multilingual LM performance and diminishes the perplexity gap throughout diverse languages.
arXiv Detail & Related papers (2024-03-15T21:21:11Z) - The Less the Merrier? Investigating Language Representation in
Multilingual Models [8.632506864465501]
We investigate the linguistic representation of different languages in multilingual models.
We observe from our experiments that community-centered models perform better at distinguishing between languages in the same family for low-resource languages.
arXiv Detail & Related papers (2023-10-20T02:26:34Z) - Discovering Representation Sprachbund For Multilingual Pre-Training [139.05668687865688]
We generate language representation from multilingual pre-trained models and conduct linguistic analysis.
We cluster all the target languages into multiple groups and name each group as a representation sprachbund.
Experiments are conducted on cross-lingual benchmarks and significant improvements are achieved compared to strong baselines.
arXiv Detail & Related papers (2021-09-01T09:32:06Z) - Cross-lingual Machine Reading Comprehension with Language Branch
Knowledge Distillation [105.41167108465085]
Cross-lingual Machine Reading (CLMRC) remains a challenging problem due to the lack of large-scale datasets in low-source languages.
We propose a novel augmentation approach named Language Branch Machine Reading (LBMRC)
LBMRC trains multiple machine reading comprehension (MRC) models proficient in individual language.
We devise a multilingual distillation approach to amalgamate knowledge from multiple language branch models to a single model for all target languages.
arXiv Detail & Related papers (2020-10-27T13:12:17Z) - When Being Unseen from mBERT is just the Beginning: Handling New
Languages With Multilingual Language Models [2.457872341625575]
Transfer learning based on pretraining language models on a large amount of raw data has become a new norm to reach state-of-the-art performance in NLP.
We show that such models behave in multiple ways on unseen languages.
arXiv Detail & Related papers (2020-10-24T10:15:03Z) - That Sounds Familiar: an Analysis of Phonetic Representations Transfer
Across Languages [72.9927937955371]
We use the resources existing in other languages to train a multilingual automatic speech recognition model.
We observe significant improvements across all languages in the multilingual setting, and stark degradation in the crosslingual setting.
Our analysis uncovered that even the phones that are unique to a single language can benefit greatly from adding training data from other languages.
arXiv Detail & Related papers (2020-05-16T22:28:09Z) - Bridging Linguistic Typology and Multilingual Machine Translation with
Multi-View Language Representations [83.27475281544868]
We use singular vector canonical correlation analysis to study what kind of information is induced from each source.
We observe that our representations embed typology and strengthen correlations with language relationships.
We then take advantage of our multi-view language vector space for multilingual machine translation, where we achieve competitive overall translation accuracy.
arXiv Detail & Related papers (2020-04-30T16:25:39Z) - Learning to Scale Multilingual Representations for Vision-Language Tasks [51.27839182889422]
The effectiveness of SMALR is demonstrated with ten diverse languages, over twice the number supported in vision-language tasks to date.
We evaluate on multilingual image-sentence retrieval and outperform prior work by 3-4% with less than 1/5th the training parameters compared to other word embedding methods.
arXiv Detail & Related papers (2020-04-09T01:03:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.