Deep variational network for rapid 4D flow MRI reconstruction
- URL: http://arxiv.org/abs/2004.09610v1
- Date: Mon, 20 Apr 2020 20:17:49 GMT
- Title: Deep variational network for rapid 4D flow MRI reconstruction
- Authors: Valery Vishnevskiy, Jonas Walheim, Sebastian Kozerke
- Abstract summary: Long in vivo scan times necessitate accelerated imaging techniques that leverage data correlations.
We propose an efficient model-based deep neural reconstruction network.
The network is shown to reconstruct undersampled 4D flow MRI data in under a minute on standard consumer hardware.
- Score: 0.5156484100374058
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Phase-contrast magnetic resonance imaging (MRI) provides time-resolved
quantification of blood flow dynamics that can aid clinical diagnosis. Long in
vivo scan times due to repeated three-dimensional (3D) volume sampling over
cardiac phases and breathing cycles necessitate accelerated imaging techniques
that leverage data correlations. Standard compressed sensing reconstruction
methods require tuning of hyperparameters and are computationally expensive,
which diminishes the potential reduction of examination times. We propose an
efficient model-based deep neural reconstruction network and evaluate its
performance on clinical aortic flow data. The network is shown to reconstruct
undersampled 4D flow MRI data in under a minute on standard consumer hardware.
Remarkably, the relatively low amounts of tunable parameters allowed the
network to be trained on images from 11 reference scans while generalizing well
to retrospective and prospective undersampled data for various acceleration
factors and anatomies.
Related papers
- Continuous K-space Recovery Network with Image Guidance for Fast MRI Reconstruction [5.910509015352437]
Fast MRI reconstruction aims to restore high-quality images from the undersampled k-space.
Existing methods typically train deep learning models to map the undersampled data to artifact-free MRI images.
We propose a continuous k-space recovery network from a new perspective of implicit neural representation with image domain guidance.
arXiv Detail & Related papers (2024-11-18T04:54:04Z) - A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
Deep neural networks have shown great potential for reconstructing high-fidelity images from undersampled measurements.
Our model is based on neural operators, a discretization-agnostic architecture.
Our inference speed is also 1,400x faster than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - A Path Towards Clinical Adaptation of Accelerated MRI [0.0]
We explore augmentations to neural network MRI image reconstructors to enhance their clinical relevancy.
We demonstrate that training reconstructors on MR signal data with variable acceleration factors can improve their average performance during a clinical patient scan by up to $2%$.
arXiv Detail & Related papers (2022-08-26T18:34:41Z) - Scale-Equivariant Unrolled Neural Networks for Data-Efficient
Accelerated MRI Reconstruction [33.82162420709648]
We propose modeling the proximal operators of unrolled neural networks with scale-equivariant convolutional neural networks.
Our approach demonstrates strong improvements over the state-of-the-art unrolled neural networks under the same memory constraints.
arXiv Detail & Related papers (2022-04-21T23:29:52Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
This article aims to introduce the deep learning based data driven techniques for fast MRI including convolutional neural network and generative adversarial network based methods.
We will detail the research in coupling physics and data driven models for MRI acceleration.
Finally, we will demonstrate through a few clinical applications, explain the importance of data harmonisation and explainable models for such fast MRI techniques in multicentre and multi-scanner studies.
arXiv Detail & Related papers (2022-04-01T22:48:08Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
We propose a convolutional long short-term memory (Conv-LSTM) based recurrent neural network (RNN), or ConvLR, to reconstruct interventional images with golden-angle radial sampling.
The proposed algorithm has the potential to achieve real-time i-MRI for DBS and can be used for general purpose MR-guided intervention.
arXiv Detail & Related papers (2022-03-28T14:03:45Z) - 4D iterative reconstruction of brain fMRI in the moving fetus [1.8492120771993543]
The accuracy of the proposed method was quantitatively evaluated on a group of real clinical fMRI fetuses.
The results indicate improvements of reconstruction quality compared to the conventional 3D approach.
arXiv Detail & Related papers (2021-11-22T18:12:21Z) - Deep MRI Reconstruction with Radial Subsampling [2.7998963147546148]
Retrospectively applying a subsampling mask onto the k-space data is a way of simulating the accelerated acquisition of k-space data in real clinical setting.
We compare and provide a review for the effect of applying either rectilinear or radial retrospective subsampling on the quality of the reconstructions outputted by trained deep neural networks.
arXiv Detail & Related papers (2021-08-17T17:45:51Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
We propose a diffusion encoding scheme, called Slice-Interleaved Diffusion.
SIDE, that interleaves each diffusion-weighted (DW) image volume with slices encoded with different diffusion gradients.
We also present a method based on deep learning for effective reconstruction of DW images from the highly slice-undersampled data.
arXiv Detail & Related papers (2020-02-25T14:48:17Z) - Microvascular Dynamics from 4D Microscopy Using Temporal Segmentation [81.30750944868142]
We are able to track changes in cerebral blood volume over time and identify spontaneous arterial dilations that propagate towards the pial surface.
This new imaging capability is a promising step towards characterizing the hemodynamic response function upon which functional magnetic resonance imaging (fMRI) is based.
arXiv Detail & Related papers (2020-01-14T22:55:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.