Scale-Equivariant Unrolled Neural Networks for Data-Efficient
Accelerated MRI Reconstruction
- URL: http://arxiv.org/abs/2204.10436v1
- Date: Thu, 21 Apr 2022 23:29:52 GMT
- Title: Scale-Equivariant Unrolled Neural Networks for Data-Efficient
Accelerated MRI Reconstruction
- Authors: Beliz Gunel, Arda Sahiner, Arjun D. Desai, Akshay S. Chaudhari,
Shreyas Vasanawala, Mert Pilanci, John Pauly
- Abstract summary: We propose modeling the proximal operators of unrolled neural networks with scale-equivariant convolutional neural networks.
Our approach demonstrates strong improvements over the state-of-the-art unrolled neural networks under the same memory constraints.
- Score: 33.82162420709648
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unrolled neural networks have enabled state-of-the-art reconstruction
performance and fast inference times for the accelerated magnetic resonance
imaging (MRI) reconstruction task. However, these approaches depend on
fully-sampled scans as ground truth data which is either costly or not possible
to acquire in many clinical medical imaging applications; hence, reducing
dependence on data is desirable. In this work, we propose modeling the proximal
operators of unrolled neural networks with scale-equivariant convolutional
neural networks in order to improve the data-efficiency and robustness to
drifts in scale of the images that might stem from the variability of patient
anatomies or change in field-of-view across different MRI scanners. Our
approach demonstrates strong improvements over the state-of-the-art unrolled
neural networks under the same memory constraints both with and without data
augmentations on both in-distribution and out-of-distribution scaled images
without significantly increasing the train or inference time.
Related papers
- Unifying Subsampling Pattern Variations for Compressed Sensing MRI with Neural Operators [72.79532467687427]
Compressed Sensing MRI reconstructs images of the body's internal anatomy from undersampled and compressed measurements.
Deep neural networks have shown great potential for reconstructing high-quality images from highly undersampled measurements.
We propose a unified model that is robust to different subsampling patterns and image resolutions in CS-MRI.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Attention Hybrid Variational Net for Accelerated MRI Reconstruction [7.046523233290946]
The application of compressed sensing (CS)-enabled data reconstruction for accelerating magnetic resonance imaging (MRI) remains a challenging problem.
This is due to the fact that the information lost in k-space from the acceleration mask makes it difficult to reconstruct an image similar to the quality of a fully sampled image.
We propose a deep learning-based attention hybrid variational network that performs learning in both the k-space and image domain.
arXiv Detail & Related papers (2023-06-21T16:19:07Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
We show how to unfold an iterative MGDUN algorithm into a novel model-guided deep unfolding network by taking the MRI observation matrix.
In this paper, we propose a novel Model-Guided interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction.
arXiv Detail & Related papers (2022-09-15T03:58:30Z) - A Path Towards Clinical Adaptation of Accelerated MRI [0.0]
We explore augmentations to neural network MRI image reconstructors to enhance their clinical relevancy.
We demonstrate that training reconstructors on MR signal data with variable acceleration factors can improve their average performance during a clinical patient scan by up to $2%$.
arXiv Detail & Related papers (2022-08-26T18:34:41Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
We propose a convolutional long short-term memory (Conv-LSTM) based recurrent neural network (RNN), or ConvLR, to reconstruct interventional images with golden-angle radial sampling.
The proposed algorithm has the potential to achieve real-time i-MRI for DBS and can be used for general purpose MR-guided intervention.
arXiv Detail & Related papers (2022-03-28T14:03:45Z) - Recurrent Variational Network: A Deep Learning Inverse Problem Solver
applied to the task of Accelerated MRI Reconstruction [3.058685580689605]
We present a novel Deep Learning-based Inverse Problem solver applied to the task of accelerated MRI reconstruction.
The RecurrentVarNet consists of multiple blocks, each responsible for one unrolled iteration of the gradient descent algorithm for solving inverse problems.
Our proposed method achieves new state of the art qualitative and quantitative reconstruction results on 5-fold and 10-fold accelerated data from a public multi-channel brain dataset.
arXiv Detail & Related papers (2021-11-18T11:44:04Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - Deep Parallel MRI Reconstruction Network Without Coil Sensitivities [4.559089047554929]
We propose a novel deep neural network architecture by mapping the robust proximal gradient scheme for fast image reconstruction in parallel MRI (pMRI) with regularization function trained from data.
The proposed network learns to adaptively combine the multi-coil images from incomplete pMRI data into a single image with homogeneous contrast, which is then passed to a nonlinear encoder to efficiently extract sparse features of the image.
arXiv Detail & Related papers (2020-08-04T08:39:36Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
We propose a diffusion encoding scheme, called Slice-Interleaved Diffusion.
SIDE, that interleaves each diffusion-weighted (DW) image volume with slices encoded with different diffusion gradients.
We also present a method based on deep learning for effective reconstruction of DW images from the highly slice-undersampled data.
arXiv Detail & Related papers (2020-02-25T14:48:17Z) - ODE-based Deep Network for MRI Reconstruction [1.569044447685249]
We propose an ODE-based deep network for MRI reconstruction to enable the rapid acquisition of MR images with improved image quality.
Our results with undersampled data demonstrate that our method can deliver higher quality images in comparison to the reconstruction methods based on the standard UNet network and Residual network.
arXiv Detail & Related papers (2019-12-27T20:13:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.