論文の概要: Self-Supervised Feature Extraction for 3D Axon Segmentation
- arxiv url: http://arxiv.org/abs/2004.09629v1
- Date: Mon, 20 Apr 2020 20:46:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-11 19:14:46.400764
- Title: Self-Supervised Feature Extraction for 3D Axon Segmentation
- Title(参考訳): 3次元軸索セグメンテーションのための自己監督的特徴抽出
- Authors: Tzofi Klinghoffer, Peter Morales, Young-Gyun Park, Nicholas Evans,
Kwanghun Chung, and Laura J. Brattain
- Abstract要約: 既存の学習ベースの3D脳画像の軸索を自動的に追跡する手法は、手動で注釈付けされたセグメンテーションラベルに依存することが多い。
本研究では、軸索の管状構造を利用してラベルのないデータから特徴抽出器を構築する自己教師付き補助タスクを提案する。
単一ニューロンであるJanliaデータセットであるShielD PVGPeデータセットとBigNeuron Projectの両方で,3次元U-Netモデルよりも優れたセグメンテーション性能を示す。
- 参考スコア(独自算出の注目度): 7.181047714452116
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing learning-based methods to automatically trace axons in 3D brain
imagery often rely on manually annotated segmentation labels. Labeling is a
labor-intensive process and is not scalable to whole-brain analysis, which is
needed for improved understanding of brain function. We propose a
self-supervised auxiliary task that utilizes the tube-like structure of axons
to build a feature extractor from unlabeled data. The proposed auxiliary task
constrains a 3D convolutional neural network (CNN) to predict the order of
permuted slices in an input 3D volume. By solving this task, the 3D CNN is able
to learn features without ground-truth labels that are useful for downstream
segmentation with the 3D U-Net model. To the best of our knowledge, our model
is the first to perform automated segmentation of axons imaged at subcellular
resolution with the SHIELD technique. We demonstrate improved segmentation
performance over the 3D U-Net model on both the SHIELD PVGPe dataset and the
BigNeuron Project, single neuron Janelia dataset.
- Abstract(参考訳): 既存の学習に基づく3d脳画像の軸索を自動的に追跡する手法は、しばしば手動で注釈付きセグメンテーションラベルに依存している。
ラベリングは労働集約的なプロセスであり、脳機能を理解するために必要とされる全脳分析には拡張性がない。
本研究では,軸索の管状構造を利用してラベルなしデータから特徴抽出器を構築する自己教師付き補助タスクを提案する。
提案する補助タスクは、3次元畳み込みニューラルネットワーク(cnn)を制約し、入力3次元ボリュームにおける置換スライスの順序を予測する。
この課題を解決することで、3D CNNは、3D U-Netモデルで下流のセグメンテーションに有用な、地平線ラベルなしで機能を学ぶことができる。
我々の知る限りでは、我々のモデルはシールド技術を用いて細胞内解像度で撮影された軸索の自動セグメンテーションを行う最初のモデルである。
単一ニューロンであるJanliaデータセットであるShielD PVGPeデータセットとBigNeuron Projectの両方で,3次元U-Netモデルよりも優れたセグメンテーション性能を示す。
関連論文リスト
- Bayesian Self-Training for Semi-Supervised 3D Segmentation [59.544558398992386]
3Dセグメンテーションはコンピュータビジョンの中核的な問題である。
完全に教師されたトレーニングを採用するために、3Dポイントクラウドを密にラベル付けすることは、労働集約的で高価です。
半教師付きトレーニングは、ラベル付きデータの小さなセットのみを付与し、より大きなラベル付きデータセットを伴って、より実用的な代替手段を提供する。
論文 参考訳(メタデータ) (2024-09-12T14:54:31Z) - Label-Efficient 3D Brain Segmentation via Complementary 2D Diffusion Models with Orthogonal Views [10.944692719150071]
相補的な2次元拡散モデルを用いた新しい3次元脳分割法を提案する。
私たちのゴールは、個々の主題に対して完全なラベルを必要とせずに、信頼性の高いセグメンテーション品質を達成することです。
論文 参考訳(メタデータ) (2024-07-17T06:14:53Z) - Self-supervised learning via inter-modal reconstruction and feature
projection networks for label-efficient 3D-to-2D segmentation [4.5206601127476445]
ラベル効率のよい3D-to-2Dセグメンテーションのための新しい畳み込みニューラルネットワーク(CNN)と自己教師付き学習(SSL)手法を提案する。
異なるデータセットの結果から、提案されたCNNは、ラベル付きデータに制限のあるシナリオにおいて、Diceスコアの最大8%まで、アートの状態を著しく改善することが示された。
論文 参考訳(メタデータ) (2023-07-06T14:16:25Z) - Swin3D: A Pretrained Transformer Backbone for 3D Indoor Scene
Understanding [40.68012530554327]
室内3Dシーン理解のための3DバックボーンであるSSTを導入する。
我々は,線形メモリの複雑さを伴うスパースボクセルの自己アテンションを効率的に行える3Dスウィントランスを,バックボーンネットワークとして設計する。
我々のアプローチによって実現されたスケーラビリティ、汎用性、優れたパフォーマンスをさらに検証する大規模なアブレーション研究のシリーズである。
論文 参考訳(メタデータ) (2023-04-14T02:49:08Z) - Semi-Weakly Supervised Object Kinematic Motion Prediction [56.282759127180306]
3Dオブジェクトが与えられた場合、運動予測は移動部と対応する運動パラメータを識別することを目的としている。
階層的部分分割と移動部パラメータのマップを学習するグラフニューラルネットワークを提案する。
ネットワーク予測は、擬似ラベル付き移動情報を持つ大規模な3Dオブジェクトを生成する。
論文 参考訳(メタデータ) (2023-03-31T02:37:36Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
2流グラフ畳み込みネットワーク(TSGCNet)を提案し、異なる幾何学的特性から多視点情報を学ぶ。
3次元口腔内スキャナーで得られた歯科モデルのリアルタイムデータセットを用いてTSGCNetの評価を行った。
論文 参考訳(メタデータ) (2020-12-26T08:02:56Z) - Learning Hybrid Representations for Automatic 3D Vessel Centerline
Extraction [57.74609918453932]
3次元医用画像からの血管の自動抽出は血管疾患の診断に不可欠である。
既存の方法では、3次元画像からそのような細い管状構造を分割する際に、抽出された容器の不連続に悩まされることがある。
抽出された船舶の連続性を維持するためには、地球的幾何学を考慮に入れる必要があると論じる。
この課題を解決するためのハイブリッド表現学習手法を提案します。
論文 参考訳(メタデータ) (2020-12-14T05:22:49Z) - Exploring Deep 3D Spatial Encodings for Large-Scale 3D Scene
Understanding [19.134536179555102]
生の3次元点雲の空間的特徴を非方向性グラフモデルに符号化することで,CNNに基づくアプローチの限界を克服する代替手法を提案する。
提案手法は、訓練時間とモデル安定性を改善して、最先端の精度で達成し、さらなる研究の可能性を示す。
論文 参考訳(メタデータ) (2020-11-29T12:56:19Z) - CAKES: Channel-wise Automatic KErnel Shrinking for Efficient 3D Networks [87.02416370081123]
3次元畳み込みニューラルネットワーク(CNN)は,映像解析やボリューム画像認識などの3次元シーン理解に広く応用されている。
本稿では,標準的な3Dコンボリューションを一連の経済活動に縮小させることで,効率的な3D学習を実現するために,チャネルワイドなKErnel Shrinking(CAKES)を提案する。
論文 参考訳(メタデータ) (2020-03-28T14:21:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。