A Decomposition-based Large-scale Multi-modal Multi-objective
Optimization Algorithm
- URL: http://arxiv.org/abs/2004.09838v1
- Date: Tue, 21 Apr 2020 09:18:54 GMT
- Title: A Decomposition-based Large-scale Multi-modal Multi-objective
Optimization Algorithm
- Authors: Yiming Peng, Hisao Ishibuchi
- Abstract summary: We propose an efficient multi-modal multi-objective optimization algorithm based on the widely used MOEA/D algorithm.
Experimental results show that our proposed algorithm can effectively preserve the diversity of solutions in the decision space.
- Score: 9.584279193016522
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A multi-modal multi-objective optimization problem is a special kind of
multi-objective optimization problem with multiple Pareto subsets. In this
paper, we propose an efficient multi-modal multi-objective optimization
algorithm based on the widely used MOEA/D algorithm. In our proposed algorithm,
each weight vector has its own sub-population. With a clearing mechanism and a
greedy removal strategy, our proposed algorithm can effectively preserve
equivalent Pareto optimal solutions (i.e., different Pareto optimal solutions
with same objective values). Experimental results show that our proposed
algorithm can effectively preserve the diversity of solutions in the decision
space when handling large-scale multi-modal multi-objective optimization
problems.
Related papers
- Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Federated Multi-Level Optimization over Decentralized Networks [55.776919718214224]
We study the problem of distributed multi-level optimization over a network, where agents can only communicate with their immediate neighbors.
We propose a novel gossip-based distributed multi-level optimization algorithm that enables networked agents to solve optimization problems at different levels in a single timescale.
Our algorithm achieves optimal sample complexity, scaling linearly with the network size, and demonstrates state-of-the-art performance on various applications.
arXiv Detail & Related papers (2023-10-10T00:21:10Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - A novel multiobjective evolutionary algorithm based on decomposition and
multi-reference points strategy [14.102326122777475]
Multiobjective evolutionary algorithm based on decomposition (MOEA/D) has been regarded as a significantly promising approach for solving multiobjective optimization problems (MOPs)
We propose an improved MOEA/D algorithm by virtue of the well-known Pascoletti-Serafini scalarization method and a new strategy of multi-reference points.
arXiv Detail & Related papers (2021-10-27T02:07:08Z) - An Analysis of Phenotypic Diversity in Multi-Solution Optimization [118.97353274202749]
We show that multiobjective optimization does not always produce much diversity, multimodal optimization produces higher fitness solutions, and quality diversity is not sensitive to genetic neutrality.
An autoencoder is used to discover phenotypic features automatically, producing an even more diverse solution set with quality diversity.
arXiv Detail & Related papers (2021-05-10T10:39:03Z) - Manifold Interpolation for Large-Scale Multi-Objective Optimization via
Generative Adversarial Networks [12.18471608552718]
Large-scale multiobjective optimization problems (LSMOPs) are characterized as involving hundreds or even thousands of decision variables and multiple conflicting objectives.
Previous research has shown that these optimal solutions are uniformly distributed on the manifold structure in the low-dimensional space.
In this work, a generative adversarial network (GAN)-based manifold framework is proposed to learn the manifold and generate high-quality solutions.
arXiv Detail & Related papers (2021-01-08T09:38:38Z) - A Niching Indicator-Based Multi-modal Many-objective Optimizer [7.81768535871051]
There is no efficient method for multi-modal many-objective optimization, where the number of objectives is more than three.
This paper proposes a niching indicator-based multi-modal multi- and many-objective optimization algorithm.
arXiv Detail & Related papers (2020-10-01T07:45:46Z) - A Framework to Handle Multi-modal Multi-objective Optimization in
Decomposition-based Evolutionary Algorithms [7.81768535871051]
decomposition-based evolutionary algorithms have good performance for multi-objective optimization.
They are likely to perform poorly for multi-modal multi-objective optimization due to the lack of mechanisms to maintain the solution space diversity.
This paper proposes a framework to improve the performance of decomposition-based evolutionary algorithms for multi-modal multi-objective optimization.
arXiv Detail & Related papers (2020-09-30T14:32:57Z) - Follow the bisector: a simple method for multi-objective optimization [65.83318707752385]
We consider optimization problems, where multiple differentiable losses have to be minimized.
The presented method computes descent direction in every iteration to guarantee equal relative decrease of objective functions.
arXiv Detail & Related papers (2020-07-14T09:50:33Z) - Decomposition in Decision and Objective Space for Multi-Modal
Multi-Objective Optimization [15.681236469530397]
Multi-modal multi-objective optimization problems (MMMOPs) have multiple subsets within the Pareto-optimal Set.
Prevalent multi-objective evolutionary algorithms are not purely designed to search for multiple solution subsets, whereas, algorithms designed for MMMOPs demonstrate degraded performance in the objective space.
This motivates the design of better algorithms for addressing MMMOPs.
arXiv Detail & Related papers (2020-06-04T03:18:47Z) - Pareto Multi-Task Learning [53.90732663046125]
Multi-task learning is a powerful method for solving multiple correlated tasks simultaneously.
It is often impossible to find one single solution to optimize all the tasks, since different tasks might conflict with each other.
Recently, a novel method is proposed to find one single Pareto optimal solution with good trade-off among different tasks by casting multi-task learning as multiobjective optimization.
arXiv Detail & Related papers (2019-12-30T08:58:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.