論文の概要: Towards Generalization of 3D Human Pose Estimation In The Wild
- arxiv url: http://arxiv.org/abs/2004.09989v1
- Date: Tue, 21 Apr 2020 13:31:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-11 07:34:08.294609
- Title: Towards Generalization of 3D Human Pose Estimation In The Wild
- Title(参考訳): 野生における3次元人文推定の一般化に向けて
- Authors: Renato Baptista, Alexandre Saint, Kassem Al Ismaeil, Djamila Aouada
- Abstract要約: 3DBodyTex.Poseは、3Dの人間のポーズ推定のタスクに対処するデータセットである。
3DBodyTex.Poseは、さまざまな衣服やポーズで405種類の実際の被写体を含む高品質でリッチなデータを提供する。
- 参考スコア(独自算出の注目度): 73.19542580408971
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose 3DBodyTex.Pose, a dataset that addresses the task
of 3D human pose estimation in-the-wild. Generalization to in-the-wild images
remains limited due to the lack of adequate datasets. Existent ones are usually
collected in indoor controlled environments where motion capture systems are
used to obtain the 3D ground-truth annotations of humans. 3DBodyTex.Pose offers
high quality and rich data containing 405 different real subjects in various
clothing and poses, and 81k image samples with ground-truth 2D and 3D pose
annotations. These images are generated from 200 viewpoints among which 70
challenging extreme viewpoints. This data was created starting from high
resolution textured 3D body scans and by incorporating various realistic
backgrounds. Retraining a state-of-the-art 3D pose estimation approach using
data augmented with 3DBodyTex.Pose showed promising improvement in the overall
performance, and a sensible decrease in the per joint position error when
testing on challenging viewpoints. The 3DBodyTex.Pose is expected to offer the
research community with new possibilities for generalizing 3D pose estimation
from monocular in-the-wild images.
- Abstract(参考訳): 本稿では,3次元ポーズ推定の課題に対処するデータセットである3dbodytex.poseを提案する。
野生画像への一般化は、十分なデータセットがないため、まだ限られている。
既存のものは通常、ヒトの3次元地平線アノテーションを得るためにモーションキャプチャシステムを使用する屋内制御環境で収集される。
3DBodyTex.Poseは、さまざまな衣服やポーズで405種類の実際の被写体を含む高品質でリッチなデータを提供する。
これらの画像は200の視点から生成され、70の極端な視点に挑戦する。
このデータは、高解像度テクスチャの3dボディスキャンから始まり、さまざまなリアルな背景を取り込んだものだ。
3DBodyTexを付加したデータを用いた最先端の3Dポーズ推定手法の訓練を行ったところ、全体的な性能は向上し、挑戦的な視点でテストした場合の関節位置誤差は合理的に減少した。
3DBodyTex.Poseは、単一眼内画像から3Dポーズ推定を一般化する新たな可能性を提供すると期待されている。
関連論文リスト
- MPL: Lifting 3D Human Pose from Multi-view 2D Poses [75.26416079541723]
本稿では,大規模かつリッチなトレーニングデータセットが存在する2次元ポーズ推定と,トランスフォーマーネットワークを用いた2次元から3次元ポーズリフトを提案する。
実験の結果,MPJPEの誤差は2次元ポーズを三角測量した3次元ポーズと比較して最大45%減少することがわかった。
論文 参考訳(メタデータ) (2024-08-20T12:55:14Z) - SpaRP: Fast 3D Object Reconstruction and Pose Estimation from Sparse Views [36.02533658048349]
本研究では,3次元テクスチャメッシュを再構成し,スパースビュー画像に対する相対カメラのポーズを推定する新しい手法であるSpaRPを提案する。
SpaRPは2次元拡散モデルから知識を抽出し、それらを微調整し、スパースビュー間の3次元空間関係を暗黙的に推論する。
テクスチャ化されたメッシュを生成するのに、わずか20秒しかかからず、カメラは入力ビューにポーズする。
論文 参考訳(メタデータ) (2024-08-19T17:53:10Z) - MPM: A Unified 2D-3D Human Pose Representation via Masked Pose Modeling [59.74064212110042]
mpmcanは、3D人間のポーズ推定、クラッドされた2Dポーズからの3Dポーズ推定、3Dポーズ完了をtextocbsingleフレームワークで処理する。
MPI-INF-3DHPにおいて、広く使われているポーズデータセットの広範な実験とアブレーション研究を行い、最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-06-29T10:30:00Z) - Decanus to Legatus: Synthetic training for 2D-3D human pose lifting [26.108023246654646]
10個の手作り3Dポーズ(Decanus)に基づく3Dポーズ分布から無限個の合成人間のポーズ(Legatus)を生成するアルゴリズムを提案する。
この結果から,特定データセットの実際のデータを用いた手法に匹敵する3次元ポーズ推定性能を,ゼロショット設定で実現し,フレームワークの可能性を示した。
論文 参考訳(メタデータ) (2022-10-05T13:10:19Z) - PoseGU: 3D Human Pose Estimation with Novel Human Pose Generator and
Unbiased Learning [36.609189237732394]
3Dポーズ推定は近年,コンピュータビジョン領域において大きな関心を集めている。
既存の3Dポーズ推定手法は,大規模な3Dポーズデータセットに強く依存している。
本稿では,種子サンプルの小さなサイズにのみアクセス可能な多彩なポーズを生成する新規な人造ポーズ生成装置PoseGUを提案する。
論文 参考訳(メタデータ) (2022-07-07T23:43:53Z) - VoxelTrack: Multi-Person 3D Human Pose Estimation and Tracking in the
Wild [98.69191256693703]
本稿では,VoxelTrackを用いて,多人数の3次元ポーズ推定と,広義のベースラインで分離された少数のカメラからの追跡を行う。
マルチブランチネットワークを使用して、環境中のすべての人に3Dポーズと再識別機能(Re-ID)を共同で推定する。
これは、Shelf、Campus、CMU Panopticの3つの公開データセットに対して、最先端の手法よりも大きなマージンで優れている。
論文 参考訳(メタデータ) (2021-08-05T08:35:44Z) - Heuristic Weakly Supervised 3D Human Pose Estimation [13.82540778667711]
弱教師付き3D人間のポーズ(HW-HuP)ソリューションは、3Dのポーズデータが入手できない場合に3Dのポーズを推定する。
HW-HuPは,ヒトのベッドでのポーズと野生での幼児のポーズという,3次元のポーズデータが得られにくい2つの実践的な環境で,最先端のモデルにおいて有意義に改善されていることを示す。
論文 参考訳(メタデータ) (2021-05-23T18:40:29Z) - AGORA: Avatars in Geography Optimized for Regression Analysis [35.22486186509372]
AGORAは、高いリアリズムと高精度な地上真実を持つ合成データセットである。
SMPL-Xのボディモデル(顔と手)を3Dスキャンに合わせることで、参照3Dポーズと体形を作成する。
このデータセットを用いて既存の3次元ポーズ推定手法の評価を行い、ほとんどの手法が子供の画像に悪影響を及ぼすことを見出した。
論文 参考訳(メタデータ) (2021-04-29T20:33:25Z) - SelfPose: 3D Egocentric Pose Estimation from a Headset Mounted Camera [97.0162841635425]
頭部装着型VR装置の縁に設置した下向きの魚眼カメラから撮影した単眼画像から,エゴセントリックな3Dボディポーズ推定法を提案する。
この特異な視点は、厳密な自己閉塞と視点歪みを伴う、独特の視覚的な外観のイメージに繋がる。
本稿では,2次元予測の不確実性を考慮した新しいマルチブランチデコーダを用いたエンコーダデコーダアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-11-02T16:18:06Z) - Exemplar Fine-Tuning for 3D Human Model Fitting Towards In-the-Wild 3D
Human Pose Estimation [107.07047303858664]
3次元の地平線アノテーションを持つ大規模な人的データセットは、野生では入手が困難である。
既存の2Dデータセットを高品質な3Dポーズマッチングで拡張することで、この問題に対処する。
結果として得られるアノテーションは、3Dのプロシージャネットワークをスクラッチからトレーニングするのに十分である。
論文 参考訳(メタデータ) (2020-04-07T20:21:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。