論文の概要: PoseGU: 3D Human Pose Estimation with Novel Human Pose Generator and
Unbiased Learning
- arxiv url: http://arxiv.org/abs/2207.03618v1
- Date: Thu, 7 Jul 2022 23:43:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-11 13:11:18.513544
- Title: PoseGU: 3D Human Pose Estimation with Novel Human Pose Generator and
Unbiased Learning
- Title(参考訳): PoseGU:新しい人文生成器と不偏学習による3次元人文推定
- Authors: Shannan Guan, Haiyan Lu, Linchao Zhu, Gengfa Fang
- Abstract要約: 3Dポーズ推定は近年,コンピュータビジョン領域において大きな関心を集めている。
既存の3Dポーズ推定手法は,大規模な3Dポーズデータセットに強く依存している。
本稿では,種子サンプルの小さなサイズにのみアクセス可能な多彩なポーズを生成する新規な人造ポーズ生成装置PoseGUを提案する。
- 参考スコア(独自算出の注目度): 36.609189237732394
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D pose estimation has recently gained substantial interests in computer
vision domain. Existing 3D pose estimation methods have a strong reliance on
large size well-annotated 3D pose datasets, and they suffer poor model
generalization on unseen poses due to limited diversity of 3D poses in training
sets. In this work, we propose PoseGU, a novel human pose generator that
generates diverse poses with access only to a small size of seed samples, while
equipping the Counterfactual Risk Minimization to pursue an unbiased evaluation
objective. Extensive experiments demonstrate PoseGU outforms almost all the
state-of-the-art 3D human pose methods under consideration over three popular
benchmark datasets. Empirical analysis also proves PoseGU generates 3D poses
with improved data diversity and better generalization ability.
- Abstract(参考訳): 3Dポーズ推定は近年,コンピュータビジョン領域において大きな関心を集めている。
既存の3Dポーズ推定手法は,大規模な3Dポーズデータセットに強く依存しており,トレーニングセットにおける3Dポーズの多様性が限定されているため,目に見えないポーズのモデル一般化に苦慮している。
本研究では,多種多様なポーズを生成する新規な人造ポーズ生成装置PoseGUを提案し,非バイアス評価の目的を追求するために,対人リスク最小化(Counterfactual Risk Minimization)を取り入れた。
大規模な実験により、PoseGUは3つの人気のあるベンチマークデータセットを考慮に入れた最先端の3D人間のポーズ手法のほぼ全てを上回ります。
実証分析により、PoseGUはデータの多様性を改善し、一般化能力を向上した3Dポーズを生成する。
関連論文リスト
- ManiPose: Manifold-Constrained Multi-Hypothesis 3D Human Pose Estimation [54.86887812687023]
ほとんどの3D-HPE法は回帰モデルに依存しており、入力と出力の1対1のマッピングを前提としている。
提案するManiPoseは,2次元入力毎に複数の候補3次元ポーズを提案可能な,新しい多様体制約型マルチハイポテーシスモデルである。
従来のマルチハイブリッドアプローチとは異なり、我々のソリューションは完全に教師付きであり、複雑な生成モデルに依存しない。
論文 参考訳(メタデータ) (2023-12-11T13:50:10Z) - MPM: A Unified 2D-3D Human Pose Representation via Masked Pose Modeling [59.74064212110042]
mpmcanは、3D人間のポーズ推定、クラッドされた2Dポーズからの3Dポーズ推定、3Dポーズ完了をtextocbsingleフレームワークで処理する。
MPI-INF-3DHPにおいて、広く使われているポーズデータセットの広範な実験とアブレーション研究を行い、最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-06-29T10:30:00Z) - Heuristic Weakly Supervised 3D Human Pose Estimation [13.82540778667711]
弱教師付き3D人間のポーズ(HW-HuP)ソリューションは、3Dのポーズデータが入手できない場合に3Dのポーズを推定する。
HW-HuPは,ヒトのベッドでのポーズと野生での幼児のポーズという,3次元のポーズデータが得られにくい2つの実践的な環境で,最先端のモデルにおいて有意義に改善されていることを示す。
論文 参考訳(メタデータ) (2021-05-23T18:40:29Z) - Adapted Human Pose: Monocular 3D Human Pose Estimation with Zero Real 3D
Pose Data [14.719976311208502]
トレーニングとテストデータドメインのギャップは、しばしばモデルのパフォーマンスに悪影響を及ぼします。
本稿では、外見とポーズ空間の両方における適応問題に対処する適応的ヒューマンポーズ(AHuP)アプローチを提案する。
AHuPは、実際のアプリケーションでは、ターゲットドメインからのデータはアクセスできないか、限られた情報しか取得できないという現実的な前提に基づいて構築されている。
論文 参考訳(メタデータ) (2021-05-23T01:20:40Z) - PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose
Estimation [83.50127973254538]
既存の3D人間のポーズ推定器は、新しいデータセットへの一般化性能が悪い。
PoseAugは、より多くの多様性に向けて利用可能なトレーニングのポーズを強化することを学ぶ新しい自動増強フレームワークです。
論文 参考訳(メタデータ) (2021-05-06T06:57:42Z) - Residual Pose: A Decoupled Approach for Depth-based 3D Human Pose
Estimation [18.103595280706593]
我々は,CNNによる信頼度の高い2次元ポーズ推定の最近の進歩を活用し,深度画像から人物の3次元ポーズを推定する。
提案手法は2つの公開データセットの精度と速度の両面で非常に競争力のある結果が得られる。
論文 参考訳(メタデータ) (2020-11-10T10:08:13Z) - Towards Generalization of 3D Human Pose Estimation In The Wild [73.19542580408971]
3DBodyTex.Poseは、3Dの人間のポーズ推定のタスクに対処するデータセットである。
3DBodyTex.Poseは、さまざまな衣服やポーズで405種類の実際の被写体を含む高品質でリッチなデータを提供する。
論文 参考訳(メタデータ) (2020-04-21T13:31:58Z) - Self-Supervised 3D Human Pose Estimation via Part Guided Novel Image
Synthesis [72.34794624243281]
ラベルのないビデオフレームからバリエーションを分離する自己教師付き学習フレームワークを提案する。
3Dポーズと空間部分マップの表現ギャップを埋める、微分可能な形式化により、多様なカメラの動きを持つビデオで操作できる。
論文 参考訳(メタデータ) (2020-04-09T07:55:01Z) - Weakly-Supervised 3D Human Pose Learning via Multi-view Images in the
Wild [101.70320427145388]
本稿では、3Dアノテーションを必要としない弱教師付きアプローチを提案し、ラベルのないマルチビューデータから3Dポーズを推定する。
提案手法を2つの大規模データセット上で評価する。
論文 参考訳(メタデータ) (2020-03-17T08:47:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。