論文の概要: Unsupervised Domain Adaptation through Inter-modal Rotation for RGB-D
Object Recognition
- arxiv url: http://arxiv.org/abs/2004.10016v1
- Date: Tue, 21 Apr 2020 13:53:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-11 07:33:47.288842
- Title: Unsupervised Domain Adaptation through Inter-modal Rotation for RGB-D
Object Recognition
- Title(参考訳): RGB-Dオブジェクト認識のためのモーダル間回転による教師なし領域適応
- Authors: Mohammad Reza Loghmani, Luca Robbiano, Mirco Planamente, Kiru Park,
Barbara Caputo and Markus Vincze
- Abstract要約: 本稿では,RGBと深度画像のモーダル間関係を利用して,合成領域から実領域へのシフトを低減する新しいRGB-D DA法を提案する。
提案手法は,主認識タスクに加えて,RGBと深度画像の相対的回転を予測するプリテキストタスクである畳み込みニューラルネットワークを訓練することで解決する。
- 参考スコア(独自算出の注目度): 31.24587317555857
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised Domain Adaptation (DA) exploits the supervision of a label-rich
source dataset to make predictions on an unlabeled target dataset by aligning
the two data distributions. In robotics, DA is used to take advantage of
automatically generated synthetic data, that come with "free" annotation, to
make effective predictions on real data. However, existing DA methods are not
designed to cope with the multi-modal nature of RGB-D data, which are widely
used in robotic vision. We propose a novel RGB-D DA method that reduces the
synthetic-to-real domain shift by exploiting the inter-modal relation between
the RGB and depth image. Our method consists of training a convolutional neural
network to solve, in addition to the main recognition task, the pretext task of
predicting the relative rotation between the RGB and depth image. To evaluate
our method and encourage further research in this area, we define two benchmark
datasets for object categorization and instance recognition. With extensive
experiments, we show the benefits of leveraging the inter-modal relations for
RGB-D DA.
- Abstract(参考訳): Unsupervised Domain Adaptation (DA)はラベル豊富なソースデータセットの監視を利用して、2つのデータ分布を整列させてラベルのないターゲットデータセットの予測を行う。
ロボット工学では、DAは自動生成された合成データ、つまり「自由」アノテーションの利点を生かし、実データに対する効果的な予測を行う。
しかし、既存のDA法は、ロボットビジョンで広く使われているRGB-Dデータのマルチモーダルな性質に対処するためには設計されていない。
本稿では,RGBと深度画像間のモーダル関係を利用して,合成領域から実領域へのシフトを低減する新しいRGB-D DA法を提案する。
提案手法は,主認識タスクに加えて,RGBと深度画像の相対的回転を予測するプリテキストタスクである畳み込みニューラルネットワークを訓練することで解決する。
本手法の評価とさらなる研究を促進するため,オブジェクト分類とインスタンス認識のためのベンチマークデータセットを2つ定義する。
広範な実験により,RGB-D DAのモーダル間関係を利用する利点が示された。
関連論文リスト
- DCANet: Differential Convolution Attention Network for RGB-D Semantic
Segmentation [2.2032272277334375]
深度データに対する幾何情報と局所範囲相関を考慮した画素差分畳み込みアテンション(DCA)モジュールを提案する。
DCAを拡張して、長距離コンテキスト依存を伝播する差分畳み込み注意(EDCA)をアンサンブルする。
DCAとEDCAで構築された2分岐ネットワークである差分畳み込みネットワーク(DCANet)は、2モーダルデータのローカルおよびグローバルな情報を融合するために提案されている。
論文 参考訳(メタデータ) (2022-10-13T05:17:34Z) - CIR-Net: Cross-modality Interaction and Refinement for RGB-D Salient
Object Detection [144.66411561224507]
本稿では,CIR-Netと呼ばれる畳み込みニューラルネットワーク(CNN)モデルを提案する。
我々のネットワークは、定性的かつ定量的に最先端の塩分濃度検出器より優れています。
論文 参考訳(メタデータ) (2022-10-06T11:59:19Z) - Visible-Infrared Person Re-Identification Using Privileged Intermediate
Information [10.816003787786766]
クロスモーダルな人物再識別(ReID)は、RGBとIRモダリティ間のデータ分散の大きなドメインシフトのために困難である。
本稿では2つのメインドメイン間のブリッジとして機能する中間仮想ドメインを作成するための新しいアプローチを提案する。
我々は、深いReIDモデルをトレーニングするための追加情報を提供する、可視領域と赤外線領域間の画像を生成する新しい手法を考案した。
論文 参考訳(メタデータ) (2022-09-19T21:08:14Z) - Dual Swin-Transformer based Mutual Interactive Network for RGB-D Salient
Object Detection [67.33924278729903]
本研究では,Dual Swin-Transformerを用いたMutual Interactive Networkを提案する。
視覚入力における長距離依存をモデル化するために,RGBと奥行きモードの両方の機能抽出器としてSwin-Transformerを採用している。
5つの標準RGB-D SODベンチマークデータセットに関する総合的な実験は、提案手法の優位性を実証している。
論文 参考訳(メタデータ) (2022-06-07T08:35:41Z) - Pyramidal Attention for Saliency Detection [30.554118525502115]
本稿では,RGB画像のみを活用し,RGBから深度を推定し,中間深度特性を利用する。
ピラミッド型アテンション構造を用いて,マルチレベル畳み込み変換器の特徴を抽出し,初期表現の処理を行う。
我々は8つのRGBおよびRGB-Dデータセット上で21と40の最先端SOD法に対する性能を著しく改善したことを報告した。
論文 参考訳(メタデータ) (2022-04-14T06:57:46Z) - Self-Supervised Representation Learning for RGB-D Salient Object
Detection [93.17479956795862]
我々は、自己教師付き表現学習を用いて、クロスモーダルオートエンコーダと深さ-輪郭推定という2つのプレテキストタスクを設計する。
我々のプレテキストタスクは、ネットワークがリッチなセマンティックコンテキストをキャプチャする事前トレーニングを実行するのに、少数のRGB-Dデータセットしか必要としない。
RGB-D SODにおけるクロスモーダル核融合の固有の問題として,マルチパス核融合モジュールを提案する。
論文 参考訳(メタデータ) (2021-01-29T09:16:06Z) - Bi-directional Cross-Modality Feature Propagation with
Separation-and-Aggregation Gate for RGB-D Semantic Segmentation [59.94819184452694]
深度情報はRGBD画像のセマンティックセグメンテーションにおいて有用であることが証明されている。
既存のほとんどの研究は、深度測定がRGBピクセルと正確で整合していると仮定し、問題をモーダルな特徴融合としてモデル化している。
本稿では,RGB特徴量応答を効果的に再検討するだけでなく,複数の段階を通して正確な深度情報を抽出し,代わりに2つの補正表現を集約する,統一的で効率的なクロスモダリティガイドを提案する。
論文 参考訳(メタデータ) (2020-07-17T18:35:24Z) - Synergistic saliency and depth prediction for RGB-D saliency detection [76.27406945671379]
既存のRGB-Dサリエンシデータセットは小さく、多様なシナリオに対して過度に適合し、限定的な一般化につながる可能性がある。
そこで本研究では,RGB-Dサリエンシ検出のための半教師付きシステムを提案する。
論文 参考訳(メタデータ) (2020-07-03T14:24:41Z) - UC-Net: Uncertainty Inspired RGB-D Saliency Detection via Conditional
Variational Autoencoders [81.5490760424213]
データラベリングプロセスから学習することで、RGB-Dサリエンシ検出に不確実性を利用するための第1のフレームワーク(UCNet)を提案する。
そこで本研究では,サリエンシデータラベリングにヒントを得て,確率的RGB-Dサリエンシ検出ネットワークを提案する。
論文 参考訳(メタデータ) (2020-04-13T04:12:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。