RSSI-based Outdoor Localization with Single Unmanned Aerial Vehicle
- URL: http://arxiv.org/abs/2004.10083v1
- Date: Mon, 20 Apr 2020 15:05:41 GMT
- Title: RSSI-based Outdoor Localization with Single Unmanned Aerial Vehicle
- Authors: Seyma Yucer, Furkan Tektas, Mesih Veysi Kilinc, Ilyas Kandemir, Hasari
Celebi, Yakup Genc, Yusuf Sinan Akgul
- Abstract summary: We propose an RSSI-based localization method that utilizes only a single UAV.
The proposed method can achieve location accuracy as low as 7m depending on the number of iterations.
- Score: 9.577478740319668
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Localization of a target object has been performed conventionally using
multiple terrestrial reference nodes. This paradigm is recently shifted towards
utilization of unmanned aerial vehicles (UAVs) for locating target objects.
Since locating of a target using simultaneous multiple UAVs is costly and
impractical, achieving this task by utilizing single UAV becomes desirable.
Hence, in this paper, we propose an RSSI-based localization method that
utilizes only a single UAV. The proposed approach is based on clustering method
along with the Singular Value Decomposition (SVD). The performance of the
proposed method is verified by the experimental measurements collected by a UAV
that we have designed and computer simulations. The results show that the
proposed method can achieve location accuracy as low as 7m depending on the
number of iterations.
Related papers
- SFTrack: A Robust Scale and Motion Adaptive Algorithm for Tracking Small and Fast Moving Objects [2.9803250365852443]
This paper addresses the problem of multi-object tracking in Unmanned Aerial Vehicle (UAV) footage.
It plays a critical role in various UAV applications, including traffic monitoring systems and real-time suspect tracking by the police.
We propose a new tracking strategy, which initiates the tracking of target objects from low-confidence detections.
arXiv Detail & Related papers (2024-10-26T05:09:20Z) - UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
We formulate a UAV-enabled collaborative beamforming multi-objective optimization problem (UCBMOP) to maximize the transmission rate of the UVAA and minimize the energy consumption of all UAVs.
We use the heterogeneous-agent trust region policy optimization (HATRPO) as the basic framework, and then propose an improved HATRPO algorithm, namely HATRPO-UCB.
arXiv Detail & Related papers (2024-04-11T03:19:22Z) - Anti-Jamming Path Planning Using GCN for Multi-UAV [0.0]
The effectiveness of UAV swarms can be severely compromised by jamming technology.
A novel approach, where UAV swarms leverage collective intelligence to predict jamming areas, is proposed.
A multi-agent control algorithm is then employed to disperse the UAV swarm, avoid jamming, and regroup upon reaching the target.
arXiv Detail & Related papers (2024-03-13T07:28:05Z) - Diffusion-Based Particle-DETR for BEV Perception [94.88305708174796]
Bird-Eye-View (BEV) is one of the most widely-used scene representations for visual perception in Autonomous Vehicles (AVs)
Recent diffusion-based methods offer a promising approach to uncertainty modeling for visual perception but fail to effectively detect small objects in the large coverage of the BEV.
Here, we address this problem by combining the diffusion paradigm with current state-of-the-art 3D object detectors in BEV.
arXiv Detail & Related papers (2023-12-18T09:52:14Z) - Joint Optimization of Deployment and Trajectory in UAV and IRS-Assisted
IoT Data Collection System [25.32139119893323]
Unmanned aerial vehicles (UAVs) can be applied in many Internet of Things (IoT) systems.
The UAV-IoT wireless channels may be occasionally blocked by trees or high-rise buildings.
This article aims to minimize the energy consumption of the system by jointly optimizing the deployment and trajectory of the UAV.
arXiv Detail & Related papers (2022-10-27T06:27:40Z) - Vision-Based UAV Self-Positioning in Low-Altitude Urban Environments [20.69412701553767]
Unmanned Aerial Vehicles (UAVs) rely on satellite systems for stable positioning.
In such situations, vision-based techniques can serve as an alternative, ensuring the self-positioning capability of UAVs.
This paper presents a new dataset, DenseUAV, which is the first publicly available dataset designed for the UAV self-positioning task.
arXiv Detail & Related papers (2022-01-23T07:18:55Z) - Trajectory Design for UAV-Based Internet-of-Things Data Collection: A
Deep Reinforcement Learning Approach [93.67588414950656]
In this paper, we investigate an unmanned aerial vehicle (UAV)-assisted Internet-of-Things (IoT) system in a 3D environment.
We present a TD3-based trajectory design for completion time minimization (TD3-TDCTM) algorithm.
Our simulation results show the superiority of the proposed TD3-TDCTM algorithm over three conventional non-learning based baseline methods.
arXiv Detail & Related papers (2021-07-23T03:33:29Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
We propose a framework for a team of UAVs to cooperatively explore and find a target in complex GPS-denied environments with obstacles.
The team of UAVs autonomously navigates, explores, detects, and finds the target in a cluttered environment with a known map.
Results indicate that the proposed multi-UAV system has improvements in terms of time-cost, the proportion of search area surveyed, as well as successful rates for search and rescue missions.
arXiv Detail & Related papers (2021-07-19T12:54:04Z) - MRDet: A Multi-Head Network for Accurate Oriented Object Detection in
Aerial Images [51.227489316673484]
We propose an arbitrary-oriented region proposal network (AO-RPN) to generate oriented proposals transformed from horizontal anchors.
To obtain accurate bounding boxes, we decouple the detection task into multiple subtasks and propose a multi-head network.
Each head is specially designed to learn the features optimal for the corresponding task, which allows our network to detect objects accurately.
arXiv Detail & Related papers (2020-12-24T06:36:48Z) - Autonomous and cooperative design of the monitor positions for a team of
UAVs to maximize the quantity and quality of detected objects [0.5801044612920815]
This paper tackles the problem of positioning a swarm of UAVs inside a completely unknown terrain.
YOLOv3 and a system to identify duplicate objects of interest were employed to assign a single score to each UAVs' configuration.
A novel navigation algorithm, capable of optimizing the previously defined score, is proposed.
arXiv Detail & Related papers (2020-07-02T16:52:57Z) - Congestion-aware Evacuation Routing using Augmented Reality Devices [96.68280427555808]
We present a congestion-aware routing solution for indoor evacuation, which produces real-time individual-customized evacuation routes among multiple destinations.
A population density map, obtained on-the-fly by aggregating locations of evacuees from user-end Augmented Reality (AR) devices, is used to model the congestion distribution inside a building.
arXiv Detail & Related papers (2020-04-25T22:54:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.