論文の概要: Generative Synthetic Augmentation using Label-to-Image Translation for
Nuclei Image Segmentation
- arxiv url: http://arxiv.org/abs/2004.10126v3
- Date: Tue, 2 Mar 2021 22:48:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-11 06:30:15.834576
- Title: Generative Synthetic Augmentation using Label-to-Image Translation for
Nuclei Image Segmentation
- Title(参考訳): 核画像分割のためのラベル-画像変換を用いた生成的合成拡張
- Authors: Takato Yasuno
- Abstract要約: 本稿では,エッジ構造を持つセマンティックラベルから実画像へマッピングする,ラベルから画像への変換を用いた合成拡張を提案する。
提案手法により,提案手法の精度が向上したことを計算および報告する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In medical image diagnosis, pathology image analysis using semantic
segmentation becomes important for efficient screening as a field of digital
pathology. The spatial augmentation is ordinary used for semantic segmentation.
Tumor images under malignant are rare and to annotate the labels of nuclei
region takes much time-consuming. We require an effective use of dataset to
maximize the segmentation accuracy. It is expected that some augmentation to
transform generalized images influence the segmentation performance. We propose
a synthetic augmentation using label-to-image translation, mapping from a
semantic label with the edge structure to a real image. Exactly this paper deal
with stain slides of nuclei in tumor. Actually, we demonstrate several
segmentation algorithms applied to the initial dataset that contains real
images and labels using synthetic augmentation in order to add their
generalized images. We computes and reports that a proposed synthetic
augmentation procedure improve their accuracy.
- Abstract(参考訳): 医用画像診断では, デジタル病理学の一分野として, セマンティックセグメンテーションを用いた病理画像解析が重要となる。
空間拡張は意味セグメンテーションに通常使用される。
悪性の腫瘍像は稀であり、核領域のラベルに注釈をつけるのに多くの時間を要する。
セグメンテーションの精度を最大化するためにデータセットを効果的に利用する必要がある。
一般化画像変換のための拡張がセグメント化性能に影響を及ぼすことが期待される。
本稿では,意味ラベルとエッジ構造をマッピングし,画像から画像へのラベラル変換による合成拡張を提案する。
本論文は特に腫瘍の原子核の染色スライスを扱う。
実際、いくつかのセグメンテーションアルゴリズムを実画像とラベルを含む初期データセットに適用し、それらの一般化画像を追加するために合成拡張を用いた。
提案手法により,提案手法の精度が向上したことを計算および報告する。
関連論文リスト
- COIN: Counterfactual inpainting for weakly supervised semantic segmentation for medical images [3.5418498524791766]
本研究は, 新規なカウンターファクト・インパインティング・アプローチ(COIN)の開発である。
COINは、予測された分類ラベルを生成モデルを用いて異常から正常に反転させる。
本手法の有効性は,エストニアのタルツ大学病院から取得したCT画像から,合成標的と実際の腎腫瘍を分離することによって実証される。
論文 参考訳(メタデータ) (2024-04-19T12:09:49Z) - Diffusion-based Data Augmentation for Nuclei Image Segmentation [68.28350341833526]
核セグメンテーションのための拡散法を初めて導入する。
このアイデアは、多数のラベル付き画像を合成し、セグメンテーションモデルを訓練することを目的としている。
実験の結果,10%のラベル付き実データセットを合成サンプルで拡張することにより,同等のセグメンテーション結果が得られることがわかった。
論文 参考訳(メタデータ) (2023-10-22T06:16:16Z) - Exploring Semantic Consistency in Unpaired Image Translation to Generate
Data for Surgical Applications [1.8011391924021904]
本研究では,外科的応用における適切なデータを生成するための画像翻訳手法を実験的に検討した。
構造相似性損失と対照的学習の単純な組み合わせが、最も有望な結果をもたらすことがわかった。
論文 参考訳(メタデータ) (2023-09-06T14:43:22Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
半教師付きバイオメディカルイメージセグメンテーションのための自己教師付き補正学習パラダイムを提案する。
共有エンコーダと2つの独立デコーダを含むデュアルタスクネットワークを設計する。
異なるタスクのための3つの医用画像分割データセットの実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2023-01-12T08:19:46Z) - CT Image Synthesis Using Weakly Supervised Segmentation and Geometric
Inter-Label Relations For COVID Image Analysis [4.898744396854313]
解剖学的ラベル間の関係を学習し,GANを用いた医用画像合成法の改良を提案する。
本手法から得られた合成画像を用いて,肺CT画像から新型コロナウイルス感染領域を抽出するネットワークを訓練する。
論文 参考訳(メタデータ) (2021-06-15T07:21:24Z) - Segmenter: Transformer for Semantic Segmentation [79.9887988699159]
セマンティックセグメンテーションのためのトランスフォーマーモデルであるSegmenterを紹介します。
最近のViT(Vision Transformer)上に構築し,セマンティックセグメンテーションに拡張する。
これは、挑戦的なADE20Kデータセット上でのアートの状態を上回り、Pascal ContextとCityscapesでオンパーを実行する。
論文 参考訳(メタデータ) (2021-05-12T13:01:44Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
本論文では,画像とラベルの再生モデルを用いた識別画素レベルのタスクのための新しいフレームワークを提案する。
我々は,共同画像ラベルの分布を捕捉し,未ラベル画像の大規模な集合を用いて効率的に訓練する生成的対向ネットワークを学習する。
ドメイン内性能をいくつかのベースラインと比較し,ドメイン外一般化を極端に示す最初の例である。
論文 参考訳(メタデータ) (2021-04-12T21:41:25Z) - Image Translation for Medical Image Generation -- Ischemic Stroke
Lesions [0.0]
注釈付き病理を持つ合成データベースは、必要なトレーニングデータを提供することができる。
画像から画像への変換モデルを訓練し、脳卒中病変を伴わない脳の容積の磁気共鳴像を合成する。
臨床例は10例, 50例に過ぎなかったが, 総合的なデータ拡張は有意な改善をもたらすことが示唆された。
論文 参考訳(メタデータ) (2020-10-05T09:12:28Z) - Towards Unsupervised Learning for Instrument Segmentation in Robotic
Surgery with Cycle-Consistent Adversarial Networks [54.00217496410142]
本稿では、入力された内視鏡画像と対応するアノテーションとのマッピングを学習することを目的として、未ペア画像から画像への変換を提案する。
当社のアプローチでは,高価なアノテーションを取得することなく,イメージセグメンテーションモデルをトレーニングすることが可能です。
提案手法をEndovis 2017チャレンジデータセットで検証し,教師付きセグメンテーション手法と競合することを示す。
論文 参考訳(メタデータ) (2020-07-09T01:39:39Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。