論文の概要: COIN: Counterfactual inpainting for weakly supervised semantic segmentation for medical images
- arxiv url: http://arxiv.org/abs/2404.12832v2
- Date: Thu, 25 Jul 2024 08:09:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 19:07:19.674372
- Title: COIN: Counterfactual inpainting for weakly supervised semantic segmentation for medical images
- Title(参考訳): 医用画像の弱教師付きセマンティックセグメンテーションのためのCOIN
- Authors: Dmytro Shvetsov, Joonas Ariva, Marharyta Domnich, Raul Vicente, Dmytro Fishman,
- Abstract要約: 本研究は, 新規なカウンターファクト・インパインティング・アプローチ(COIN)の開発である。
COINは、予測された分類ラベルを生成モデルを用いて異常から正常に反転させる。
本手法の有効性は,エストニアのタルツ大学病院から取得したCT画像から,合成標的と実際の腎腫瘍を分離することによって実証される。
- 参考スコア(独自算出の注目度): 3.5418498524791766
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning is dramatically transforming the field of medical imaging and radiology, enabling the identification of pathologies in medical images, including computed tomography (CT) and X-ray scans. However, the performance of deep learning models, particularly in segmentation tasks, is often limited by the need for extensive annotated datasets. To address this challenge, the capabilities of weakly supervised semantic segmentation are explored through the lens of Explainable AI and the generation of counterfactual explanations. The scope of this research is development of a novel counterfactual inpainting approach (COIN) that flips the predicted classification label from abnormal to normal by using a generative model. For instance, if the classifier deems an input medical image X as abnormal, indicating the presence of a pathology, the generative model aims to inpaint the abnormal region, thus reversing the classifier's original prediction label. The approach enables us to produce precise segmentations for pathologies without depending on pre-existing segmentation masks. Crucially, image-level labels are utilized, which are substantially easier to acquire than creating detailed segmentation masks. The effectiveness of the method is demonstrated by segmenting synthetic targets and actual kidney tumors from CT images acquired from Tartu University Hospital in Estonia. The findings indicate that COIN greatly surpasses established attribution methods, such as RISE, ScoreCAM, and LayerCAM, as well as an alternative counterfactual explanation method introduced by Singla et al. This evidence suggests that COIN is a promising approach for semantic segmentation of tumors in CT images, and presents a step forward in making deep learning applications more accessible and effective in healthcare, where annotated data is scarce.
- Abstract(参考訳): 深層学習は医療画像と放射線学の分野を劇的に変え、CTやX線スキャンなどの医学画像の病理診断を可能にしている。
しかし、特にセグメンテーションタスクにおけるディープラーニングモデルの性能は、広範囲な注釈付きデータセットの必要性によって制限されることが多い。
この課題に対処するために、説明可能なAIのレンズと反現実的説明の生成を通じて、弱教師付きセマンティックセマンティックセマンティクスの能力を探求する。
本研究の対象は、予測された分類ラベルを、生成モデルを用いて異常から正常に反転させる新しい反ファクト・インペインティング・アプローチ(COIN)の開発である。
例えば、分類器が入力された医療画像Xが異常であると判断し、病理の存在を示すとすると、生成モデルは異常領域を塗り替えることを目的としており、分類器の元々の予測ラベルを逆転させる。
この手法により,既存のセグメンテーションマスクに依存することなく,病理の正確なセグメンテーションを作成できる。
重要な点として、画像レベルのラベルが利用されており、詳細なセグメンテーションマスクを作成するよりも、取得が極めて容易である。
本手法の有効性は,エストニアのタルツ大学病院から取得したCT画像から,合成標的と実際の腎腫瘍を分離することによって実証される。
以上の結果から,COIN は RISE,ScoreCAM,LayerCAM などの確立した帰属法をはるかに超え,Singla らによって導入された代替の反事実的説明法をはるかに超えていることが示唆された。
関連論文リスト
- Advancing Medical Image Segmentation: Morphology-Driven Learning with Diffusion Transformer [4.672688418357066]
本稿では,雑音の存在下での頑健なセグメンテーションのためのトランスフォーマー拡散(DTS)モデルを提案する。
画像の形態的表現を解析する本モデルでは, 種々の医用画像モダリティにおいて, 従来のモデルよりも良好な結果が得られた。
論文 参考訳(メタデータ) (2024-08-01T07:35:54Z) - Analysing the effectiveness of a generative model for semi-supervised
medical image segmentation [23.898954721893855]
自動セグメンテーションにおける最先端技術は、U-Netのような差別モデルを用いて、教師付き学習のままである。
半教師付き学習(SSL)は、より堅牢で信頼性の高いモデルを得るために、重複のないデータの豊富さを活用する。
セマンティックGANのような深層生成モデルは、医療画像分割問題に取り組むための真に実行可能な代替手段である。
論文 参考訳(メタデータ) (2022-11-03T15:19:59Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
我々は、デコードフェーズに2つの並列分岐を持つMixed-UNetという新しいモデルを開発する。
地域病院や公開データセットから収集したデータセットに対して,いくつかの一般的なディープラーニングに基づくセグメンテーションアプローチに対して,設計したMixed-UNetを評価した。
論文 参考訳(メタデータ) (2022-05-06T08:37:02Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
本稿では, 条件付き生成逆学習を用いたX線疾患発生のための新しいアプローチを提案する。
我々は,患者の身元を保存しながら,対象領域に対応する放射線画像を生成する。
次に、ターゲット領域で生成されたX線画像を用いてトレーニングを増強し、検出性能を向上させる。
論文 参考訳(メタデータ) (2021-10-25T14:15:57Z) - Weakly-supervised High-resolution Segmentation of Mammography Images for
Breast Cancer Diagnosis [17.936019428281586]
がん診断において、入力画像の出力に責任のある領域を局在させることにより、解釈可能性を実現することができる。
本稿では,高解像度画像の弱教師付きセグメンテーションを実現するニューラルネットワークアーキテクチャを提案する。
乳がん検診にマンモグラフィーを用いて適用し, 大規模臨床応用データセットで検証した。
論文 参考訳(メタデータ) (2021-06-13T17:25:21Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
胸部X線画像から胸部疾患を自動分類するためのCAN(Cross-Attention Networks)を提案する。
また,クロスエントロピー損失を超える新たな損失関数を設計し,クラス間の不均衡を克服する。
論文 参考訳(メタデータ) (2020-07-21T14:37:00Z) - Towards Unsupervised Learning for Instrument Segmentation in Robotic
Surgery with Cycle-Consistent Adversarial Networks [54.00217496410142]
本稿では、入力された内視鏡画像と対応するアノテーションとのマッピングを学習することを目的として、未ペア画像から画像への変換を提案する。
当社のアプローチでは,高価なアノテーションを取得することなく,イメージセグメンテーションモデルをトレーニングすることが可能です。
提案手法をEndovis 2017チャレンジデータセットで検証し,教師付きセグメンテーション手法と競合することを示す。
論文 参考訳(メタデータ) (2020-07-09T01:39:39Z) - Weakly-Supervised Segmentation for Disease Localization in Chest X-Ray
Images [0.0]
医用胸部X線画像のセマンティックセグメンテーションに対する新しいアプローチを提案する。
本手法は肺と胸壁の間の異常な空気量を検出するための胸部X線検査に適用可能である。
論文 参考訳(メタデータ) (2020-07-01T20:48:35Z) - Auxiliary Signal-Guided Knowledge Encoder-Decoder for Medical Report
Generation [107.3538598876467]
放射線技師の動作パターンを模倣する補助信号誘導知識デコーダ(ASGK)を提案する。
ASGKは、内的特徴融合と外部医療言語情報を統合して、医療知識の伝達と学習をガイドする。
論文 参考訳(メタデータ) (2020-06-06T01:00:15Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
スライド画像全体のセグメント化のための弱教師付きフレームワークを提案する。
トレーニングモデルに複数のインスタンス学習スキームを利用する。
提案するフレームワークは,The Cancer Genome AtlasとPatchCamelyonデータセットのマルチロケーションとマルチ中心公開データに基づいて評価されている。
論文 参考訳(メタデータ) (2020-04-10T13:12:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。