fMRI-S4: learning short- and long-range dynamic fMRI dependencies using
1D Convolutions and State Space Models
- URL: http://arxiv.org/abs/2208.04166v1
- Date: Mon, 8 Aug 2022 14:07:25 GMT
- Title: fMRI-S4: learning short- and long-range dynamic fMRI dependencies using
1D Convolutions and State Space Models
- Authors: Ahmed El-Gazzar, Rajat Mani Thomas, Guido Van Wingen
- Abstract summary: fMRI-S4 is a versatile deep learning model for the classification of phenotypes and psychiatric disorders from resting-state functional magnetic resonance imaging scans.
We show that fMRI-S4 can outperform existing methods on all three tasks and can be trained as a plug&play model without special hyperpararameter tuning for each setting.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Single-subject mapping of resting-state brain functional activity to
non-imaging phenotypes is a major goal of neuroimaging. The large majority of
learning approaches applied today rely either on static representations or on
short-term temporal correlations. This is at odds with the nature of brain
activity which is dynamic and exhibit both short- and long-range dependencies.
Further, new sophisticated deep learning approaches have been developed and
validated on single tasks/datasets. The application of these models for the
study of a different targets typically require exhaustive hyperparameter
search, model engineering and trial and error to obtain competitive results
with simpler linear models. This in turn limit their adoption and hinder fair
benchmarking in a rapidly developing area of research. To this end, we propose
fMRI-S4; a versatile deep learning model for the classification of phenotypes
and psychiatric disorders from the timecourses of resting-state functional
magnetic resonance imaging scans. fMRI-S4 capture short- and long- range
temporal dependencies in the signal using 1D convolutions and the recently
introduced state-space models S4. The proposed architecture is lightweight,
sample-efficient and robust across tasks/datasets. We validate fMRI-S4 on the
tasks of diagnosing major depressive disorder (MDD), autism spectrum disorder
(ASD) and sex classifcation on three multi-site rs-fMRI datasets. We show that
fMRI-S4 can outperform existing methods on all three tasks and can be trained
as a plug&play model without special hyperpararameter tuning for each setting
Related papers
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
Deep neural networks have shown great potential for reconstructing high-fidelity images from undersampled measurements.
Our model is based on neural operators, a discretization-agnostic architecture.
Our inference speed is also 1,400x faster than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Machine Learning on Dynamic Functional Connectivity: Promise, Pitfalls, and Interpretations [7.013079422694949]
We seek to establish a well-founded empirical guideline for designing deep models for functional neuroimages.
We put the spotlight on (1) What is the current state-of-the-arts (SOTA) performance in cognitive task recognition and disease diagnosis using fMRI?
We have conducted a comprehensive evaluation and statistical analysis, in various settings, to answer the above outstanding questions.
arXiv Detail & Related papers (2024-09-17T17:24:17Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
This paper proposes to directly modulate the generation process of diffusion models using fMRI signals.
By training with about 67,000 fMRI-image pairs from various individuals, our model enjoys superior fMRI-to-image decoding capacity.
arXiv Detail & Related papers (2024-03-27T02:42:52Z) - Artificial Intelligence in Fetal Resting-State Functional MRI Brain
Segmentation: A Comparative Analysis of 3D UNet, VNet, and HighRes-Net Models [1.2382905694337476]
This study introduced a novel application of artificial intelligence (AI) for automated brain segmentation in fetal brain fMRI, magnetic resonance imaging (fMRI)
Three AI models were employed: 3D UNet, VNet, and HighResNet.
Our findings shed light on the performance of different AI models for fetal resting-state fMRI brain segmentation.
arXiv Detail & Related papers (2023-11-17T19:57:05Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
Resting-state MRI functional (rs-fMRI) is increasingly employed in multi-site research to aid neurological disorder analysis.
Many methods have been proposed to reduce fMRI heterogeneity between source and target domains.
But acquiring source data is challenging due to concerns and/or data storage burdens in multi-site studies.
We design a source-free collaborative domain adaptation framework for fMRI analysis, where only a pretrained source model and unlabeled target data are accessible.
arXiv Detail & Related papers (2023-08-24T01:30:18Z) - CoRRECT: A Deep Unfolding Framework for Motion-Corrected Quantitative
R2* Mapping [12.414040285543273]
CoRRECT is a unified deep unfolding (DU) framework for Quantitative MRI (qMRI)
It consists of a model-based end-to-end neural network, a method for motion-artifact reduction, and a self-supervised learning scheme.
Our results on experimentally collected multi-Gradient-Recalled Echo (mGRE) MRI data show that CoRRECT recovers motion and inhomogeneity artifact-free R2* maps in highly accelerated acquisition settings.
arXiv Detail & Related papers (2022-10-12T15:49:51Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
This article aims to introduce the deep learning based data driven techniques for fast MRI including convolutional neural network and generative adversarial network based methods.
We will detail the research in coupling physics and data driven models for MRI acceleration.
Finally, we will demonstrate through a few clinical applications, explain the importance of data harmonisation and explainable models for such fast MRI techniques in multicentre and multi-scanner studies.
arXiv Detail & Related papers (2022-04-01T22:48:08Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z) - 4D Spatio-Temporal Deep Learning with 4D fMRI Data for Autism Spectrum
Disorder Classification [69.62333053044712]
We propose a 4D convolutional deep learning approach for ASD classification where we jointly learn from spatial and temporal data.
We employ 4D neural networks and convolutional-recurrent models which outperform a previous approach with an F1-score of 0.71 compared to an F1-score of 0.65.
arXiv Detail & Related papers (2020-04-21T17:19:06Z) - Attend and Decode: 4D fMRI Task State Decoding Using Attention Models [2.6954666679827137]
We present a novel architecture called Brain Attend and Decode (BAnD)
BAnD uses residual convolutional neural networks for spatial feature extraction and self-attention mechanisms temporal modeling.
We achieve significant performance gain compared to previous works on a 7-task benchmark from the Human Connectome Project-Young Adult dataset.
arXiv Detail & Related papers (2020-04-10T21:29:34Z) - A Hybrid 3DCNN and 3DC-LSTM based model for 4D Spatio-temporal fMRI
data: An ABIDE Autism Classification study [0.0]
We introduce an end-to-end algorithm capable of extracting features from full 4-D data using 3-D CNNs and 3-D Magnetical LSTMs.
Our results show that the proposed model achieves state of the art results on single sites with F1-scores of 0.78 and 0.7 on NYU and UM sites, respectively.
arXiv Detail & Related papers (2020-02-14T11:52:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.