A Deep Learning System for Sentiment Analysis of Service Calls
- URL: http://arxiv.org/abs/2004.10320v1
- Date: Tue, 21 Apr 2020 22:02:43 GMT
- Title: A Deep Learning System for Sentiment Analysis of Service Calls
- Authors: Yanan Jia and Sony SungChu
- Abstract summary: Sentiment analysis is crucial for the advancement of artificial intelligence (AI)
In this paper, a sentiment analysis pipeline is first carried out with respect to real-world multi-party conversations.
Based on the acoustic and linguistic features extracted from the source information, a novel aggregated method for voice sentiment recognition framework is built.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sentiment analysis is crucial for the advancement of artificial intelligence
(AI). Sentiment understanding can help AI to replicate human language and
discourse. Studying the formation and response of sentiment state from
well-trained Customer Service Representatives (CSRs) can help make the
interaction between humans and AI more intelligent. In this paper, a sentiment
analysis pipeline is first carried out with respect to real-world multi-party
conversations - that is, service calls. Based on the acoustic and linguistic
features extracted from the source information, a novel aggregated method for
voice sentiment recognition framework is built. Each party's sentiment pattern
during the communication is investigated along with the interaction sentiment
pattern between all parties.
Related papers
- Interactive Dialogue Agents via Reinforcement Learning on Hindsight Regenerations [58.65755268815283]
Many real dialogues are interactive, meaning an agent's utterances will influence their conversational partner, elicit information, or change their opinion.
We use this fact to rewrite and augment existing suboptimal data, and train via offline reinforcement learning (RL) an agent that outperforms both prompting and learning from unaltered human demonstrations.
Our results in a user study with real humans show that our approach greatly outperforms existing state-of-the-art dialogue agents.
arXiv Detail & Related papers (2024-11-07T21:37:51Z) - Rational Sensibility: LLM Enhanced Empathetic Response Generation Guided by Self-presentation Theory [8.439724621886779]
The development of Large Language Models (LLMs) provides human-centered Artificial General Intelligence (AGI) with a glimmer of hope.
Empathy serves as a key emotional attribute of humanity, playing an irreplaceable role in human-centered AGI.
In this paper, we design an innovative encoder module inspired by self-presentation theory in sociology, which specifically processes sensibility and rationality sentences in dialogues.
arXiv Detail & Related papers (2023-12-14T07:38:12Z) - Improving Empathetic Dialogue Generation by Dynamically Infusing
Commonsense Knowledge [39.536604198392375]
In empathetic conversations, individuals express their empathy towards others.
Previous work has mainly focused on generating empathetic responses by utilizing the speaker's emotion.
We propose a novel approach for empathetic response generation, which incorporates an adaptive module for commonsense knowledge selection.
arXiv Detail & Related papers (2023-05-24T10:25:12Z) - Accurate Emotion Strength Assessment for Seen and Unseen Speech Based on
Data-Driven Deep Learning [70.30713251031052]
We propose a data-driven deep learning model, i.e. StrengthNet, to improve the generalization of emotion strength assessment for seen and unseen speech.
Experiments show that the predicted emotion strength of the proposed StrengthNet is highly correlated with ground truth scores for both seen and unseen speech.
arXiv Detail & Related papers (2022-06-15T01:25:32Z) - Human-AI Collaboration Enables More Empathic Conversations in Text-based
Peer-to-Peer Mental Health Support [10.743204843534512]
We develop Hailey, an AI-in-the-loop agent that provides just-in-time feedback to help participants who provide support (peer supporters) respond more empathically to those seeking help (support seekers)
We show that our Human-AI collaboration approach leads to a 19.60% increase in conversational empathy between peers overall.
We find a larger 38.88% increase in empathy within the subsample of peer supporters who self-identify as experiencing difficulty providing support.
arXiv Detail & Related papers (2022-03-28T23:37:08Z) - Neural Approaches to Conversational Information Retrieval [94.77863916314979]
A conversational information retrieval (CIR) system is an information retrieval (IR) system with a conversational interface.
Recent progress in deep learning has brought tremendous improvements in natural language processing (NLP) and conversational AI.
This book surveys recent advances in CIR, focusing on neural approaches that have been developed in the last few years.
arXiv Detail & Related papers (2022-01-13T19:04:59Z) - Building Human-like Communicative Intelligence: A Grounded Perspective [1.0152838128195465]
After making astounding progress in language learning, AI systems seem to approach the ceiling that does not reflect important aspects of human communicative capacities.
This paper suggests that the dominant cognitively-inspired AI directions, based on nativist and symbolic paradigms, lack necessary substantiation and concreteness to guide progress in modern AI.
I propose a list of concrete, implementable components for building "grounded" linguistic intelligence.
arXiv Detail & Related papers (2022-01-02T01:43:24Z) - Exemplars-guided Empathetic Response Generation Controlled by the
Elements of Human Communication [88.52901763928045]
We propose an approach that relies on exemplars to cue the generative model on fine stylistic properties that signal empathy to the interlocutor.
We empirically show that these approaches yield significant improvements in empathetic response quality in terms of both automated and human-evaluated metrics.
arXiv Detail & Related papers (2021-06-22T14:02:33Z) - Reinforcement Learning for Emotional Text-to-Speech Synthesis with
Improved Emotion Discriminability [82.39099867188547]
Emotional text-to-speech synthesis (ETTS) has seen much progress in recent years.
We propose a new interactive training paradigm for ETTS, denoted as i-ETTS.
We formulate an iterative training strategy with reinforcement learning to ensure the quality of i-ETTS optimization.
arXiv Detail & Related papers (2021-04-03T13:52:47Z) - BiERU: Bidirectional Emotional Recurrent Unit for Conversational
Sentiment Analysis [18.1320976106637]
The main difference between conversational sentiment analysis and single sentence sentiment analysis is the existence of context information.
Existing approaches employ complicated deep learning structures to distinguish different parties in a conversation and then model the context information.
We propose a fast, compact and parameter-efficient party-ignorant framework named bidirectional emotional recurrent unit for conversational sentiment analysis.
arXiv Detail & Related papers (2020-05-31T11:13:13Z) - You Impress Me: Dialogue Generation via Mutual Persona Perception [62.89449096369027]
The research in cognitive science suggests that understanding is an essential signal for a high-quality chit-chat conversation.
Motivated by this, we propose P2 Bot, a transmitter-receiver based framework with the aim of explicitly modeling understanding.
arXiv Detail & Related papers (2020-04-11T12:51:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.