論文の概要: A New Metric for Lumpy and Intermittent Demand Forecasts:
Stock-keeping-oriented Prediction Error Costs
- arxiv url: http://arxiv.org/abs/2004.10537v1
- Date: Wed, 22 Apr 2020 12:50:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-10 17:47:28.779182
- Title: A New Metric for Lumpy and Intermittent Demand Forecasts:
Stock-keeping-oriented Prediction Error Costs
- Title(参考訳): 投機的・断続的な需要予測のための新しい指標:株価維持型予測誤差コスト
- Authors: Dominik Martin, Philipp Spitzer, Niklas K\"uhl
- Abstract要約: 本稿では,製品需要予測のための新しい指標を提案する。
この指標は自動車のアフターマーケットからのシミュレーションと実際の需要時系列に基づいている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Forecasts of product demand are essential for short- and long-term
optimization of logistics and production. Thus, the most accurate prediction
possible is desirable. In order to optimally train predictive models, the
deviation of the forecast compared to the actual demand needs to be assessed by
a proper metric. However, if a metric does not represent the actual prediction
error, predictive models are insufficiently optimized and, consequently, will
yield inaccurate predictions. The most common metrics such as MAPE or RMSE,
however, are not suitable for the evaluation of forecasting errors, especially
for lumpy and intermittent demand patterns, as they do not sufficiently account
for, e.g., temporal shifts (prediction before or after actual demand) or
cost-related aspects. Therefore, we propose a novel metric that, in addition to
statistical considerations, also addresses business aspects. Additionally, we
evaluate the metric based on simulated and real demand time series from the
automotive aftermarket.
- Abstract(参考訳): 物流と生産の短期的および長期的最適化には、製品需要の予測が不可欠である。
したがって、最も正確な予測が望ましい。
予測モデルを最適に訓練するには、実際の需要に対する予測の偏差を適切な測定基準で評価する必要がある。
しかし、メトリックが実際の予測誤差を表現していない場合、予測モデルは不十分に最適化され、その結果、不正確な予測が得られる。
しかし、MAPEやRMSEのような最も一般的な指標は、特に不適切な、断続的な需要パターン、例えば、時間的シフト(実際の需要の前後の予測)やコスト関連の側面を十分に考慮していないため、予測エラーの評価には適していない。
そこで本稿では,統計的考察に加えて,ビジネス面も扱う新しい指標を提案する。
さらに,自動車用アフターマーケットのシミュレーションおよび実需要時系列に基づいて測定値を評価する。
関連論文リスト
- F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
本稿では,需要予測をメタラーニング問題として定式化し,F-FOMAMLアルゴリズムを開発した。
タスク固有のメタデータを通してドメインの類似性を考慮することにより、トレーニングタスクの数が増加するにつれて過剰なリスクが減少する一般化を改善した。
従来の最先端モデルと比較して,本手法では需要予測精度が著しく向上し,内部自動販売機データセットでは平均絶対誤差が26.24%,JD.comデータセットでは1.04%削減された。
論文 参考訳(メタデータ) (2024-06-23T21:28:50Z) - Enhancing Mean-Reverting Time Series Prediction with Gaussian Processes:
Functional and Augmented Data Structures in Financial Forecasting [0.0]
本稿では,ガウス過程(GP)を基礎構造を持つ平均回帰時系列の予測に適用する。
GPは、平均予測だけでなく、将来の軌道上の確率分布全体を予測する可能性を提供する。
これは、不正なボラティリティ評価が資本損失につながる場合、正確な予測だけでは十分でない金融状況において特に有益である。
論文 参考訳(メタデータ) (2024-02-23T06:09:45Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - Introducing an Improved Information-Theoretic Measure of Predictive
Uncertainty [6.3398383724486544]
予測の不確実性は、ベイズ平均(BMA)予測分布のエントロピーによってよく測定される。
これらの制限を克服するために理論的に根ざした尺度を導入する。
提案手法は, 制御された合成タスクにおいて, より合理的に振る舞う。
論文 参考訳(メタデータ) (2023-11-14T16:55:12Z) - Fairness-enhancing deep learning for ride-hailing demand prediction [3.911105164672852]
オンデマンド配車サービスの短期需要予測は、インテリジェント交通システムにおける基本的な問題の一つである。
これまでの旅行需要予測研究は、予測精度の改善、公平性の問題の無視に重点を置いていた。
本研究では,不利コミュニティと特権コミュニティの間の予測公平性を評価・評価・向上する方法について検討する。
論文 参考訳(メタデータ) (2023-03-10T04:37:14Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
動的トラフィックシナリオでは、決定論的予測に基づく計画は信頼できない。
著者らは、決定論的アプローチが捉えられない近似を用いて予測中の不確実性を定量化する。
将来の状態の不確実性に対する降雨重量と長期予測の影響について検討した。
論文 参考訳(メタデータ) (2022-05-04T04:23:38Z) - Reframing demand forecasting: a two-fold approach for lumpy and
intermittent demand [0.9137554315375922]
その結果,競争需要予測は,需要発生予測と需要規模推定の2つのモデルによって得られることがわかった。
本研究は,需要イベントの発生予測において,グローバル分類モデルが最善の選択であることを示す。
欧州の自動車オリジナル機器メーカーの日頃の需要に対応する516年3年間の時系列からなる現実世界のデータに関するアプローチをテストしました。
論文 参考訳(メタデータ) (2021-03-23T17:57:40Z) - Right Decisions from Wrong Predictions: A Mechanism Design Alternative
to Individual Calibration [107.15813002403905]
意思決定者は、しばしば不完全な確率予測に頼る必要がある。
本稿では,予測ユーティリティが実際に取得したユーティリティと一致することを保証する補償機構を提案する。
本研究では、乗客が飛行遅延確率に基づいて、個々の旅行計画をどのように確実に最適化できるかを示すアプリケーションを示す。
論文 参考訳(メタデータ) (2020-11-15T08:22:39Z) - AutoCP: Automated Pipelines for Accurate Prediction Intervals [84.16181066107984]
本稿では、自動予測のための自動機械学習(Automatic Machine Learning for Conformal Prediction, AutoCP)というAutoMLフレームワークを提案する。
最高の予測モデルを選択しようとする慣れ親しんだAutoMLフレームワークとは異なり、AutoCPは、ユーザが指定したターゲットカバレッジ率を達成する予測間隔を構築する。
さまざまなデータセットでAutoCPをテストしたところ、ベンチマークアルゴリズムを著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2020-06-24T23:13:11Z) - Performance metrics for intervention-triggering prediction models do not
reflect an expected reduction in outcomes from using the model [71.9860741092209]
臨床研究者はしばしばリスク予測モデルの中から選択し評価する。
振り返りデータから算出される標準メトリクスは、特定の仮定の下でのみモデルユーティリティに関係します。
予測が時間を通して繰り返し配信される場合、標準メトリクスとユーティリティの関係はさらに複雑になる。
論文 参考訳(メタデータ) (2020-06-02T16:26:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。