論文の概要: ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast
- arxiv url: http://arxiv.org/abs/2402.01295v4
- Date: Fri, 16 Aug 2024 09:26:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 20:45:34.214661
- Title: ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast
- Title(参考訳): ExtremeCast:グローバル気象予報における極値予測の強化
- Authors: Wanghan Xu, Kang Chen, Tao Han, Hao Chen, Wanli Ouyang, Lei Bai,
- Abstract要約: 非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
- 参考スコア(独自算出の注目度): 57.6987191099507
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-driven weather forecast based on machine learning (ML) has experienced rapid development and demonstrated superior performance in the global medium-range forecast compared to traditional physics-based dynamical models. However, most of these ML models struggle with accurately predicting extreme weather, which is related to training loss and the uncertainty of weather systems. Through mathematical analysis, we prove that the use of symmetric losses, such as the Mean Squared Error (MSE), leads to biased predictions and underestimation of extreme values. To address this issue, we introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast. Beyond the evolution in training loss, we introduce a training-free extreme value enhancement module named ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples, thereby increasing the hit rate of low-probability extreme events. Combined with an advanced global weather forecast model, extensive experiments show that our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
- Abstract(参考訳): 機械学習(ML)に基づくデータ駆動天気予報は、従来の物理に基づく力学モデルと比較して、急速に発展し、世界中距離予測において優れた性能を示した。
しかし、これらのMLモデルのほとんどは、トレーニング損失と気象システムの不確実性に関連する極端な気象の正確な予測に苦慮している。
数学的解析により、平均二乗誤差 (MSE) のような対称損失を用いることで、偏りのある予測や極端な値の過小評価につながることが証明される。
この問題に対処するために,非対称な最適化を行う新しい損失関数Exlossを導入する。
トレーニング損失の進展に加えて,複数のランダムサンプルを用いて予測結果の不確かさを捉え,低確率の極端事象のヒット率を増大させる,ExBoosterというトレーニングフリーの極端値拡張モジュールを導入する。
先進的なグローバル気象予報モデルと組み合わせることで、我々のソリューションは極端気象予報において最先端の性能を達成でき、同時に、上位中距離予報モデルに匹敵する全体的な予測精度を維持できることを示す。
関連論文リスト
- Leveraging data-driven weather models for improving numerical weather prediction skill through large-scale spectral nudging [1.747339718564314]
本研究は,気象予測に対する物理学的アプローチとAI的アプローチの相対的強みと弱みについて述べる。
GEM予測された大規模状態変数をGraphCast予測に対してスペクトル的に評価するハイブリッドNWP-AIシステムを提案する。
その結果,このハイブリッド手法は,GEMモデルの予測能力を高めるために,GraphCastの強みを活用できることが示唆された。
論文 参考訳(メタデータ) (2024-07-08T16:39:25Z) - Lightning-Fast Convective Outlooks: Predicting Severe Convective Environments with Global AI-based Weather Models [0.08271752505511926]
激しい対流嵐は最も危険な気象現象であり、正確な予測は影響を緩和する。
最近リリースされたAIベースの天気モデルスイートは、中距離の予測を数秒で生成する。
本稿では,再解析とECMWFの運用数値天気予報モデルISSに対して,対流パラメータを対象とした3つのAIモデルの予測能力を評価する。
論文 参考訳(メタデータ) (2024-06-13T07:46:03Z) - Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
本稿では,天気予報をより微細なテンポラルスケールに一般化する物理AIハイブリッドモデル(WeatherGFT)を提案する。
具体的には、小さな時間スケールで物理進化をシミュレートするために、慎重に設計されたPDEカーネルを用いる。
我々は、異なるリードタイムでのモデルの一般化を促進するためのリードタイムアウェアトレーニングフレームワークを導入する。
論文 参考訳(メタデータ) (2024-05-22T16:21:02Z) - Uncertainty quantification for data-driven weather models [0.0]
本研究では,現在最先端の決定論的データ駆動気象モデルであるPangu-Weatherから確率的天気予報を生成するための不確実性定量化手法について検討・比較する。
具体的には,摂動によるアンサンブル予測を初期条件と比較し,予測の不確実性を定量化する手法を提案する。
欧州における選択された気象変数の中距離予測のケーススタディにおいて,不確実な定量化手法を用いてパング・ウェザーモデルを用いて得られた確率的予測は,有望な結果を示す。
論文 参考訳(メタデータ) (2024-03-20T10:07:51Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
気象予報に拡散モデル(DM)を適用した新しい手法を提案する。
提案手法は,同一のモデリングフレームワークを用いて,直接予測と反復予測の両方を実現できる。
我々のモデルの柔軟性と制御性は、一般の気象コミュニティにとってより信頼性の高いDLシステムに力を与えます。
論文 参考訳(メタデータ) (2024-02-06T21:28:42Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
この研究は、データ駆動型世界天気予報モデルであるFengWu-GHRを、0.09$circ$水平解像度で実行した。
低解像度モデルから事前知識を継承することにより、MLベースの高解像度予測を操作するための扉を開く新しいアプローチを導入する。
2022年の天気予報は、FengWu-GHRがIFS-HRESよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-01-28T13:23:25Z) - Kunyu: A High-Performing Global Weather Model Beyond Regression Losses [0.0]
大気変数の包括的配列を0.35デグ分解能で正確に予測する,グローバルなデータ駆動型天気予報モデルであるKunyuについて紹介する。
トレーニングフレームワークにレグレッションと敵の損失が組み込まれ、クンユは明快さとリアリズムを増した予測を生成する。
論文 参考訳(メタデータ) (2023-12-04T17:30:41Z) - Performative Time-Series Forecasting [71.18553214204978]
我々は,機械学習の観点から,パフォーマンス時系列予測(PeTS)を定式化する。
本稿では,予測分布シフトに対する遅延応答の概念を活用する新しい手法であるFeature Performative-Shifting(FPS)を提案する。
新型コロナウイルスの複数の時系列モデルと交通予報タスクを用いた総合的な実験を行った。
論文 参考訳(メタデータ) (2023-10-09T18:34:29Z) - SEEDS: Emulation of Weather Forecast Ensembles with Diffusion Models [13.331224394143117]
不確かさの定量化は意思決定に不可欠である。
天気予報の不確実性を表す主要なアプローチは、予測の集合を生成することです。
本稿では,これらの予測を歴史的データから学習した深部生成拡散モデルを用いてエミュレートし,計算コストを補正することを提案する。
論文 参考訳(メタデータ) (2023-06-24T22:00:06Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
我々は、再分析データから直接トレーニングできる「GraphCast」と呼ばれる機械学習ベースの手法を導入する。
全世界で10日以上、0.25度で、数百の気象変動を1分以内で予測する。
我々は,GraphCastが1380の検証対象の90%において,最も正確な運用決定システムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-12-24T18:15:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。