論文の概要: Moment-Based Domain Adaptation: Learning Bounds and Algorithms
- arxiv url: http://arxiv.org/abs/2004.10618v1
- Date: Wed, 22 Apr 2020 14:59:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-10 17:31:37.405052
- Title: Moment-Based Domain Adaptation: Learning Bounds and Algorithms
- Title(参考訳): モーメントに基づくドメイン適応:学習境界とアルゴリズム
- Authors: Werner Zellinger
- Abstract要約: この論文は、機械学習の新興分野としてのドメイン適応の数学的基礎に寄与する。
古典的な統計的学習とは対照的に、ドメイン適応の枠組みは、トレーニングにおける確率分布と応用設定の偏差を考慮に入れている。
- 参考スコア(独自算出の注目度): 1.827510863075184
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This thesis contributes to the mathematical foundation of domain adaptation
as emerging field in machine learning. In contrast to classical statistical
learning, the framework of domain adaptation takes into account deviations
between probability distributions in the training and application setting.
Domain adaptation applies for a wider range of applications as future samples
often follow a distribution that differs from the ones of the training samples.
A decisive point is the generality of the assumptions about the similarity of
the distributions. Therefore, in this thesis we study domain adaptation
problems under as weak similarity assumptions as can be modelled by finitely
many moments.
- Abstract(参考訳): この論文は、機械学習の新興分野としてのドメイン適応の数学的基礎に寄与する。
古典的な統計的学習とは対照的に、ドメイン適応の枠組みは、トレーニングにおける確率分布と応用設定のずれを考慮する。
将来のサンプルはしばしばトレーニングサンプルと異なる分布に従うため、ドメイン適応はより広い範囲のアプリケーションに適用されます。
決定的な点は、分布の類似性に関する仮定の一般化である。
そこで本論文では,有限個のモーメントによってモデル化できるような弱類似性仮定の下での領域適応問題について検討する。
関連論文リスト
- Generalizing to any diverse distribution: uniformity, gentle finetuning and rebalancing [55.791818510796645]
我々は,訓練データから大きく逸脱した場合でも,様々なテスト分布によく適応するモデルを開発することを目的としている。
ドメイン適応、ドメイン一般化、ロバスト最適化といった様々なアプローチは、アウト・オブ・ディストリビューションの課題に対処しようと試みている。
我々は、既知のドメイン内の十分に多様なテスト分布にまたがる最悪のケースエラーを考慮することで、より保守的な視点を採用する。
論文 参考訳(メタデータ) (2024-10-08T12:26:48Z) - Self-balanced Learning For Domain Generalization [64.99791119112503]
ドメインの一般化は、モデルが未知の統計を持つ対象のドメインに一般化できるように、マルチドメインのソースデータの予測モデルを学ぶことを目的としている。
既存のアプローチのほとんどは、ソースデータがドメインとクラスの両方の観点からバランスよく調整されているという前提の下で開発されている。
本稿では,多領域ソースデータの分布の違いによるバイアスを軽減するために,損失の重み付けを適応的に学習する自己均衡型領域一般化フレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-31T03:17:54Z) - f-Domain-Adversarial Learning: Theory and Algorithms [82.97698406515667]
教師なしのドメイン適応は、トレーニング中、ターゲットドメイン内のラベルなしデータにアクセス可能な、多くの機械学習アプリケーションで使用されている。
領域適応のための新しい一般化法を導出し、f-発散体の変分的特徴に基づく分布間の相違性の新しい尺度を利用する。
論文 参考訳(メタデータ) (2021-06-21T18:21:09Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
半教師付きドメイン適応(Semi-DA)の設定の下で不変表現とリスクを同時に学習することを目的とした最初の手法を提案する。
共同で textbfLearning textbfInvariant textbfRepresentations と textbfRisks の LIRR アルゴリズムを導入する。
論文 参考訳(メタデータ) (2020-10-09T15:42:35Z) - A Brief Review of Domain Adaptation [1.2043574473965317]
本稿では、ラベルがソースドメインでのみ利用可能となる、教師なしドメイン適応に焦点を当てる。
ドメイン適応問題に対処することを目的とした、浅層および深層ドメイン適応アプローチが成功している。
論文 参考訳(メタデータ) (2020-10-07T07:05:32Z) - Adaptive Risk Minimization: Learning to Adapt to Domain Shift [109.87561509436016]
ほとんどの機械学習アルゴリズムの基本的な前提は、トレーニングとテストデータは、同じ基礎となる分布から引き出されることである。
本研究では,学習データをドメインに構造化し,複数のテスト時間シフトが存在する場合の領域一般化の問題点について考察する。
本稿では、適応リスク最小化(ARM)の枠組みを紹介し、モデルがトレーニング領域に適応することを学ぶことで、効果的な適応のために直接最適化される。
論文 参考訳(メタデータ) (2020-07-06T17:59:30Z) - Adversarial Weighting for Domain Adaptation in Regression [4.34858896385326]
制御ドメイン適応の文脈において、回帰タスクを処理するための新しいインスタンスベースのアプローチを提案する。
本研究では,情報源重み付け方式とタスクを1つのフィードフォワード勾配下で学習する逆ネットワークアルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-06-15T09:44:04Z) - On generalization in moment-based domain adaptation [1.8047694351309205]
ドメイン適応アルゴリズムは、訓練データが少ないターゲットドメインに対する識別モデルの誤分類リスクを最小限に抑えるように設計されている。
標準手法は、ソース領域とターゲット領域における経験的確率分布間の距離測定に基づいて適応誤差を測定する。
論文 参考訳(メタデータ) (2020-02-19T16:05:27Z) - Incremental Unsupervised Domain-Adversarial Training of Neural Networks [17.91571291302582]
教師付き統計学習の文脈では通常、トレーニングセットはテストサンプルを描画する同じ分布から来ていると仮定される。
ここでは、モデルが新しいドメインに反復的に適応される段階的な視点から、別の道を選び、問題にアプローチします。
その結果,いくつかのデータセットにおける非増加事例に対する明らかな改善が報告され,他の最先端のドメイン適応アルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2020-01-13T09:54:35Z) - Domain Adaptation: Learning Bounds and Algorithms [80.85426994513541]
本稿では,任意の損失関数を持つ適応問題に適した分布距離,差分距離を新たに導入する。
広い損失関数族に対する領域適応のための新しい一般化境界を導出する。
また、正規化に基づくアルゴリズムの大規模クラスに対する新しい適応境界も提示する。
論文 参考訳(メタデータ) (2009-02-19T18:42:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。