A Fortran-Keras Deep Learning Bridge for Scientific Computing
- URL: http://arxiv.org/abs/2004.10652v2
- Date: Tue, 4 Aug 2020 00:15:48 GMT
- Title: A Fortran-Keras Deep Learning Bridge for Scientific Computing
- Authors: Jordan Ott, Mike Pritchard, Natalie Best, Erik Linstead, Milan Curcic,
Pierre Baldi
- Abstract summary: We introduce a software library, the Fortran-Keras Bridge (FKB)
The paper describes several unique features offered by FKB, such as customizable layers, loss functions, and network ensembles.
The paper concludes with a case study that applies FKB to address open questions about the robustness of an experimental approach to global climate simulation.
- Score: 6.768544973019004
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Implementing artificial neural networks is commonly achieved via high-level
programming languages like Python and easy-to-use deep learning libraries like
Keras. These software libraries come pre-loaded with a variety of network
architectures, provide autodifferentiation, and support GPUs for fast and
efficient computation. As a result, a deep learning practitioner will favor
training a neural network model in Python, where these tools are readily
available. However, many large-scale scientific computation projects are
written in Fortran, making it difficult to integrate with modern deep learning
methods. To alleviate this problem, we introduce a software library, the
Fortran-Keras Bridge (FKB). This two-way bridge connects environments where
deep learning resources are plentiful, with those where they are scarce. The
paper describes several unique features offered by FKB, such as customizable
layers, loss functions, and network ensembles.
The paper concludes with a case study that applies FKB to address open
questions about the robustness of an experimental approach to global climate
simulation, in which subgrid physics are outsourced to deep neural network
emulators. In this context, FKB enables a hyperparameter search of one hundred
plus candidate models of subgrid cloud and radiation physics, initially
implemented in Keras, to be transferred and used in Fortran. Such a process
allows the model's emergent behavior to be assessed, i.e. when fit
imperfections are coupled to explicit planetary-scale fluid dynamics. The
results reveal a previously unrecognized strong relationship between offline
validation error and online performance, in which the choice of optimizer
proves unexpectedly critical. This reveals many neural network architectures
that produce considerable improvements in stability including some with reduced
error, for an especially challenging training dataset.
Related papers
- pyhgf: A neural network library for predictive coding [0.2150989251218736]
texttpyhgf is a Python package for creating, manipulating and sampling dynamic networks for predictive coding.
We improve over other frameworks by enclosing the network components as transparent, modular and malleable variables in the message-passing steps.
The transparency of core variables can also translate into inference processes that leverage self-organisation principles.
arXiv Detail & Related papers (2024-10-11T19:21:38Z) - RoseNNa: A performant, portable library for neural network inference
with application to computational fluid dynamics [0.0]
We present the roseNNa library, which bridges the gap between neural network inference and CFD.
RoseNNa is a non-invasive, lightweight (1000 lines) tool for neural network inference.
arXiv Detail & Related papers (2023-07-30T21:11:55Z) - Training Deep Surrogate Models with Large Scale Online Learning [48.7576911714538]
Deep learning algorithms have emerged as a viable alternative for obtaining fast solutions for PDEs.
Models are usually trained on synthetic data generated by solvers, stored on disk and read back for training.
It proposes an open source online training framework for deep surrogate models.
arXiv Detail & Related papers (2023-06-28T12:02:27Z) - cito: An R package for training neural networks using torch [0.0]
'cito' is a user-friendly R package for deep learning (DL) applications.
It allows specifying DNNs in the familiar formula syntax used by many R packages.
'cito' includes many user-friendly functions for model plotting and analysis.
arXiv Detail & Related papers (2023-03-16T18:54:20Z) - GradInit: Learning to Initialize Neural Networks for Stable and
Efficient Training [59.160154997555956]
We present GradInit, an automated and architecture method for initializing neural networks.
It is based on a simple agnostic; the variance of each network layer is adjusted so that a single step of SGD or Adam results in the smallest possible loss value.
It also enables training the original Post-LN Transformer for machine translation without learning rate warmup.
arXiv Detail & Related papers (2021-02-16T11:45:35Z) - Training Deep Neural Networks with Constrained Learning Parameters [4.917317902787792]
A significant portion of deep learning tasks would run on edge computing systems.
We propose the Combinatorial Neural Network Training Algorithm (CoNNTrA)
CoNNTrA trains deep learning models with ternary learning parameters on the MNIST, Iris and ImageNet data sets.
Our results indicate that CoNNTrA models use 32x less memory and have errors at par with the Backpropagation models.
arXiv Detail & Related papers (2020-09-01T16:20:11Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
We take one of the simplest inference methods, a truncated max-product Belief propagation, and add what is necessary to make it a proper component of a deep learning model.
This BP-Layer can be used as the final or an intermediate block in convolutional neural networks (CNNs)
The model is applicable to a range of dense prediction problems, is well-trainable and provides parameter-efficient and robust solutions in stereo, optical flow and semantic segmentation.
arXiv Detail & Related papers (2020-03-13T13:11:35Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
Training deep neural networks on large-scale datasets requires significant hardware resources.
Backpropagation, the workhorse for training these networks, is an inherently sequential process that is difficult to parallelize.
We propose a neuro-biologically-plausible alternative to backprop that can be used to train deep networks.
arXiv Detail & Related papers (2020-02-10T16:20:02Z) - On the distance between two neural networks and the stability of
learning [59.62047284234815]
This paper relates parameter distance to gradient breakdown for a broad class of nonlinear compositional functions.
The analysis leads to a new distance function called deep relative trust and a descent lemma for neural networks.
arXiv Detail & Related papers (2020-02-09T19:18:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.