論文の概要: Spectrally Consistent UNet for High Fidelity Image Transformations
- arxiv url: http://arxiv.org/abs/2004.10696v2
- Date: Tue, 29 Sep 2020 09:32:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-10 17:47:14.285076
- Title: Spectrally Consistent UNet for High Fidelity Image Transformations
- Title(参考訳): 高忠実度画像変換のためのスペクトル一貫性UNet
- Authors: Demetris Marnerides, Thomas Bashford-Rogers and Kurt Debattista
- Abstract要約: 畳み込みニューラルネットワーク(CNN)は、多くのイメージングタスクで使われている現在のデファクトモデルである。
本研究では、UNetsの構造バイアスとそれらが出力に与える影響を評価する方法を提案する。
スペクトル的に一貫した出力を提供する Guided Image Filter の新たな使用法に基づき,新しいアップサンプリングモジュールを提案する。
- 参考スコア(独自算出の注目度): 5.494315657902533
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convolutional Neural Networks (CNNs) are the current de-facto models used for
many imaging tasks due to their high learning capacity as well as their
architectural qualities. The ubiquitous UNet architecture provides an efficient
and multi-scale solution that combines local and global information. Despite
the success of UNet architectures, the use of upsampling layers can cause
artefacts. In this work, a method for assessing the structural biases of UNets
and the effects these have on the outputs is presented, characterising their
impact in the Fourier domain. A new upsampling module is proposed, based on a
novel use of the Guided Image Filter, that provides spectrally consistent
outputs when used in a UNet architecture, forming the Guided UNet (GUNet). The
GUNet architecture is applied and evaluated for example applications of inverse
tone mapping/dynamic range expansion and colourisation from grey-scale images
and is shown to provide higher fidelity outputs.
- Abstract(参考訳): 畳み込みニューラルネットワーク(convolutional neural network、cnns)は、その高い学習能力とアーキテクチャ的性質から、多くのイメージングタスクで使用される現在のデファクトモデルである。
ユビキタスなUNetアーキテクチャは、ローカル情報とグローバル情報を組み合わせた効率的なマルチスケールソリューションを提供する。
unetアーキテクチャの成功にもかかわらず、アップサンプリング層の使用はアーティファクトを引き起こす可能性がある。
本研究では、UNetsの構造バイアスとそれらが出力に与える影響を評価する方法を示し、フーリエ領域におけるそれらの影響を特徴づける。
unetアーキテクチャで使用されるとスペクトル的に一貫した出力を提供し、ガイド付きunet(gunet)を形成する新しいアップサンプリングモジュールが提案されている。
GUNetアーキテクチャを適用して評価し、例えば、グレースケール画像からの逆トーンマッピング/ダイナミックレンジ拡張およびカラー化の適用例を示し、高忠実度出力を提供する。
関連論文リスト
- DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
水中画像強調(UIE)は、水中環境によって引き起こされる複雑な劣化のために難しい課題である。
従来の手法では、劣化過程を理想化し、中音や物体の動きが画像の特徴の分布に与える影響を無視することが多い。
提案手法では,予測画像を用いて疑似ラベルを動的に更新し,動的勾配を加えてネットワークの勾配空間を最適化する。
論文 参考訳(メタデータ) (2023-12-12T06:07:21Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
本稿では,DWT(Distance-based Weighted Transformer)を利用した画像コンポーネント間の関係をよりよく理解するためのアーキテクチャを提案する。
CNNは、粗い事前の局所的なテクスチャ情報を強化するために使用される。
DWTブロックは、特定の粗いテクスチャやコヒーレントな視覚構造を復元するために使用される。
論文 参考訳(メタデータ) (2023-10-11T12:46:11Z) - Enhancing Low-light Light Field Images with A Deep Compensation Unfolding Network [52.77569396659629]
本稿では,低光環境下で撮像した光場(LF)画像の復元に,DCUNet(Deep compensation network openfolding)を提案する。
このフレームワークは、中間拡張結果を使用して照明マップを推定し、展開プロセスで新しい拡張結果を生成する。
本稿では,LF画像の特徴を適切に活用するために,擬似明示的特徴相互作用モジュールを提案する。
論文 参考訳(メタデータ) (2023-08-10T07:53:06Z) - DPFNet: A Dual-branch Dilated Network with Phase-aware Fourier
Convolution for Low-light Image Enhancement [1.2645663389012574]
低照度画像の高精細化は、低照度画像から通常の露光画像を復元することを目的とした古典的なコンピュータビジョン問題である。
この分野でよく使われる畳み込みニューラルネットワークは、空間領域の低周波局所構造の特徴をサンプリングするのに長けている。
周波数位相のセマンティクスの制約の下で高品質なテクスチャの詳細を復元できるフーリエ係数を用いた新しいモジュールを提案する。
論文 参考訳(メタデータ) (2022-09-16T13:56:09Z) - CM-GAN: Image Inpainting with Cascaded Modulation GAN and Object-Aware
Training [112.96224800952724]
複雑な画像に大きな穴をあける際の可視像構造を生成するためのカスケード変調GAN(CM-GAN)を提案する。
各デコーダブロックにおいて、まず大域変調を適用し、粗い意味認識合成構造を行い、次に大域変調の出力に空間変調を適用し、空間適応的に特徴写像を更に調整する。
さらに,ネットワークがホール内の新たな物体を幻覚させるのを防ぐため,実世界のシナリオにおける物体除去タスクのニーズを満たすために,オブジェクト認識型トレーニングスキームを設計する。
論文 参考訳(メタデータ) (2022-03-22T16:13:27Z) - SDWNet: A Straight Dilated Network with Wavelet Transformation for Image
Deblurring [23.86692375792203]
画像劣化は、ぼやけた画像から鋭い画像を復元することを目的としたコンピュータビジョンの問題である。
我々のモデルは拡張畳み込みを用いて空間分解能の高い大きな受容場を得ることができる。
本稿では,ウェーブレット変換を用いた新しいモジュールを提案する。
論文 参考訳(メタデータ) (2021-10-12T07:58:10Z) - Generative Hierarchical Features from Synthesizing Images [65.66756821069124]
画像合成の学習は、広範囲のアプリケーションにまたがって一般化可能な顕著な階層的な視覚的特徴をもたらす可能性があることを示す。
生成的階層的特徴(Generative Hierarchical Feature, GH-Feat)と呼ばれるエンコーダが生成する視覚的特徴は、生成的タスクと識別的タスクの両方に強い伝達性を有する。
論文 参考訳(メタデータ) (2020-07-20T18:04:14Z) - Frequency learning for image classification [1.9336815376402716]
本稿では、トレーニング可能な周波数フィルタからなる入力画像のフーリエ変換を探索する新しい手法を提案する。
画像ブロックの周波数領域表現からグローバル特徴とローカル特徴の両方を学習するスライシング手法を提案する。
論文 参考訳(メタデータ) (2020-06-28T00:32:47Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
畳み込みニューラルネットワーク(CNN)は、画像復元作業における従来のアプローチよりも劇的に改善されている。
ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とした,新しいアーキテクチャを提案する。
提案手法は,高解像度の空間的詳細を同時に保存しながら,複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
論文 参考訳(メタデータ) (2020-03-15T11:04:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。