論文の概要: Generative Hierarchical Features from Synthesizing Images
- arxiv url: http://arxiv.org/abs/2007.10379v2
- Date: Sat, 3 Apr 2021 13:21:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-08 14:15:58.081980
- Title: Generative Hierarchical Features from Synthesizing Images
- Title(参考訳): 合成画像から生成した階層的特徴
- Authors: Yinghao Xu, Yujun Shen, Jiapeng Zhu, Ceyuan Yang, Bolei Zhou
- Abstract要約: 画像合成の学習は、広範囲のアプリケーションにまたがって一般化可能な顕著な階層的な視覚的特徴をもたらす可能性があることを示す。
生成的階層的特徴(Generative Hierarchical Feature, GH-Feat)と呼ばれるエンコーダが生成する視覚的特徴は、生成的タスクと識別的タスクの両方に強い伝達性を有する。
- 参考スコア(独自算出の注目度): 65.66756821069124
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative Adversarial Networks (GANs) have recently advanced image synthesis
by learning the underlying distribution of the observed data. However, how the
features learned from solving the task of image generation are applicable to
other vision tasks remains seldom explored. In this work, we show that learning
to synthesize images can bring remarkable hierarchical visual features that are
generalizable across a wide range of applications. Specifically, we consider
the pre-trained StyleGAN generator as a learned loss function and utilize its
layer-wise representation to train a novel hierarchical encoder. The visual
feature produced by our encoder, termed as Generative Hierarchical Feature
(GH-Feat), has strong transferability to both generative and discriminative
tasks, including image editing, image harmonization, image classification, face
verification, landmark detection, and layout prediction. Extensive qualitative
and quantitative experimental results demonstrate the appealing performance of
GH-Feat.
- Abstract(参考訳): generative adversarial networks (gans) は最近、観測データの基盤となる分布を学習することで画像合成を進歩させた。
しかし、画像生成の課題から学んだ特徴が、他の視覚タスクにどのように当てはまるかは、いまだに調査されていない。
本研究では,画像合成の学習が,広範囲のアプリケーションにまたがって一般化可能な,驚くべき階層的な視覚的特徴をもたらすことを示す。
具体的には、事前学習したStyleGANジェネレータを学習損失関数とみなし、その階層表現を利用して新しい階層エンコーダを訓練する。
生成的階層的特徴(GH-Feat)と呼ばれるエンコーダが生成する視覚的特徴は、画像編集、画像調和、画像分類、顔認証、ランドマーク検出、レイアウト予測など、生成的タスクと識別的タスクの両方に強い伝達性を有する。
GH-Featの誘引性能は, 定性的, 定量的に評価された。
関連論文リスト
- Image-GS: Content-Adaptive Image Representation via 2D Gaussians [55.15950594752051]
本稿では,コンテンツ適応型画像表現であるImage-GSを提案する。
異方性2Dガウスアンをベースとして、Image-GSは高いメモリ効率を示し、高速なランダムアクセスをサポートし、自然なレベルのディテールスタックを提供する。
画像-GSの一般的な効率性と忠実性は、最近のニューラルイメージ表現と業界標準テクスチャ圧縮機に対して検証される。
この研究は、機械認識、アセットストリーミング、コンテンツ生成など、適応的な品質とリソース制御を必要とする新しいアプリケーションを開発するための洞察を与えてくれることを願っている。
論文 参考訳(メタデータ) (2024-07-02T00:45:21Z) - GH-Feat: Learning Versatile Generative Hierarchical Features from GANs [61.208757845344074]
画像合成から学習した生成機能は、幅広いコンピュータビジョンタスクを解く上で大きな可能性を秘めていることを示す。
まず,事前学習したStyleGANジェネレータを学習損失関数として考慮し,エンコーダを訓練する。
GH-Feat(Generative Hierarchical Features)と呼ばれるエンコーダが生成する視覚的特徴は、階層的なGAN表現と高度に一致している。
論文 参考訳(メタデータ) (2023-01-12T21:59:46Z) - Joint Learning of Deep Texture and High-Frequency Features for
Computer-Generated Image Detection [24.098604827919203]
本稿では,CG画像検出のための深いテクスチャと高周波特徴を有する共同学習戦略を提案する。
セマンティックセグメンテーションマップを生成して、アフィン変換操作を誘導する。
原画像と原画像の高周波成分の組み合わせを、注意機構を備えたマルチブランチニューラルネットワークに供給する。
論文 参考訳(メタデータ) (2022-09-07T17:30:40Z) - Learning Hierarchical Graph Representation for Image Manipulation
Detection [50.04902159383709]
画像操作検出の目的は、画像内の操作された領域を特定し、特定することである。
最近のアプローチでは、画像に残っている改ざんするアーティファクトをキャプチャするために、洗練された畳み込みニューラルネットワーク(CNN)が採用されている。
本稿では2つの並列分岐からなる階層型グラフ畳み込みネットワーク(HGCN-Net)を提案する。
論文 参考訳(メタデータ) (2022-01-15T01:54:25Z) - A Method for Evaluating Deep Generative Models of Images via Assessing
the Reproduction of High-order Spatial Context [9.00018232117916]
GAN(Generative Adversarial Network)は、広く使われているDGMの一種である。
本稿では,2つのGANアーキテクチャによって出力される画像の客観的なテストについて述べる。
我々は、訓練されたGANによって生成した画像の特徴を再現できるいくつかのコンテキストモデル(SCM)を設計した。
論文 参考訳(メタデータ) (2021-11-24T15:58:10Z) - Ensembling with Deep Generative Views [72.70801582346344]
生成モデルは、色やポーズの変化などの現実世界の変動を模倣する人工画像の「ビュー」を合成することができる。
そこで本研究では, 画像分類などの下流解析作業において, 実画像に適用できるかどうかを検討する。
StyleGAN2を再生増強の源として使用し、顔の属性、猫の顔、車を含む分類タスクについてこの設定を調査します。
論文 参考訳(メタデータ) (2021-04-29T17:58:35Z) - Deep Snow: Synthesizing Remote Sensing Imagery with Generative
Adversarial Nets [0.5249805590164901]
GAN(Generative Adversarial Network)は、リモートセンシング画像における現実的な広汎な変化を生成するために用いられる。
生成画像と実画像の深い埋め込みに基づく変換品質指標について検討する。
論文 参考訳(メタデータ) (2020-05-18T17:05:00Z) - Towards Coding for Human and Machine Vision: A Scalable Image Coding
Approach [104.02201472370801]
圧縮モデルと生成モデルの両方を活用することにより,新しい画像符号化フレームワークを考案した。
高度な生成モデルを導入することで、コンパクトな特徴表現と参照画素から画像を再構成するフレキシブルネットワークを訓練する。
実験により、人間の視覚的品質と顔のランドマーク検出の両方において、我々の枠組みが優れていることが示された。
論文 参考訳(メタデータ) (2020-01-09T10:37:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。