AutoEG: Automated Experience Grafting for Off-Policy Deep Reinforcement
Learning
- URL: http://arxiv.org/abs/2004.10698v2
- Date: Thu, 23 Apr 2020 14:32:51 GMT
- Title: AutoEG: Automated Experience Grafting for Off-Policy Deep Reinforcement
Learning
- Authors: Keting Lu, Shiqi Zhang, Xiaoping Chen
- Abstract summary: We develop an algorithm, called Experience Grafting (EG), to enable RL agents to reorganize segments of the few high-quality trajectories from the experience pool.
We further develop an AutoEG agent that automatically learns to adjust the grafting-based learning strategy.
Results collected from a set of six robotic control environments show that, in comparison to a standard deep RL algorithm (DDPG), AutoEG increases the speed of learning process by at least 30%.
- Score: 11.159797940803593
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep reinforcement learning (RL) algorithms frequently require prohibitive
interaction experience to ensure the quality of learned policies. The
limitation is partly because the agent cannot learn much from the many
low-quality trials in early learning phase, which results in low learning rate.
Focusing on addressing this limitation, this paper makes a twofold
contribution. First, we develop an algorithm, called Experience Grafting (EG),
to enable RL agents to reorganize segments of the few high-quality trajectories
from the experience pool to generate many synthetic trajectories while
retaining the quality. Second, building on EG, we further develop an AutoEG
agent that automatically learns to adjust the grafting-based learning strategy.
Results collected from a set of six robotic control environments show that, in
comparison to a standard deep RL algorithm (DDPG), AutoEG increases the speed
of learning process by at least 30%.
Related papers
- ExACT: Teaching AI Agents to Explore with Reflective-MCTS and Exploratory Learning [78.42927884000673]
ExACT is an approach to combine test-time search and self-learning to build o1-like models for agentic applications.
We first introduce Reflective Monte Carlo Tree Search (R-MCTS), a novel test time algorithm designed to enhance AI agents' ability to explore decision space on the fly.
Next, we introduce Exploratory Learning, a novel learning strategy to teach agents to search at inference time without relying on any external search algorithms.
arXiv Detail & Related papers (2024-10-02T21:42:35Z) - Automated Reinforcement Learning (AutoRL): A Survey and Open Problems [92.73407630874841]
Automated Reinforcement Learning (AutoRL) involves not only standard applications of AutoML but also includes additional challenges unique to RL.
We provide a common taxonomy, discuss each area in detail and pose open problems which would be of interest to researchers going forward.
arXiv Detail & Related papers (2022-01-11T12:41:43Z) - Accelerating Robotic Reinforcement Learning via Parameterized Action
Primitives [92.0321404272942]
Reinforcement learning can be used to build general-purpose robotic systems.
However, training RL agents to solve robotics tasks still remains challenging.
In this work, we manually specify a library of robot action primitives (RAPS), parameterized with arguments that are learned by an RL policy.
We find that our simple change to the action interface substantially improves both the learning efficiency and task performance.
arXiv Detail & Related papers (2021-10-28T17:59:30Z) - REIN-2: Giving Birth to Prepared Reinforcement Learning Agents Using
Reinforcement Learning Agents [0.0]
In this paper, we introduce a meta-learning scheme that shifts the objective of learning to solve a task into the objective of learning to learn to solve a task (or a set of tasks)
Our model, named REIN-2, is a meta-learning scheme formulated within the RL framework, the goal of which is to develop a meta-RL agent that learns how to produce other RL agents.
Compared to traditional state-of-the-art Deep RL algorithms, experimental results show remarkable performance of our model in popular OpenAI Gym environments.
arXiv Detail & Related papers (2021-10-11T10:13:49Z) - Persistent Reinforcement Learning via Subgoal Curricula [114.83989499740193]
Value-accelerated Persistent Reinforcement Learning (VaPRL) generates a curriculum of initial states.
VaPRL reduces the interventions required by three orders of magnitude compared to episodic reinforcement learning.
arXiv Detail & Related papers (2021-07-27T16:39:45Z) - Vision-Based Autonomous Car Racing Using Deep Imitative Reinforcement
Learning [13.699336307578488]
Deep imitative reinforcement learning approach (DIRL) achieves agile autonomous racing using visual inputs.
We validate our algorithm both in a high-fidelity driving simulation and on a real-world 1/20-scale RC-car with limited onboard computation.
arXiv Detail & Related papers (2021-07-18T00:00:48Z) - Hierarchical Program-Triggered Reinforcement Learning Agents For
Automated Driving [5.404179497338455]
Recent advances in Reinforcement Learning (RL) combined with Deep Learning (DL) have demonstrated impressive performance in complex tasks, including autonomous driving.
We propose HPRL - Hierarchical Program-triggered Reinforcement Learning, which uses a hierarchy consisting of a structured program along with multiple RL agents, each trained to perform a relatively simple task.
The focus of verification shifts to the master program under simple guarantees from the RL agents, leading to a significantly more interpretable and verifiable implementation as compared to a complex RL agent.
arXiv Detail & Related papers (2021-03-25T14:19:54Z) - Knowledge Transfer in Multi-Task Deep Reinforcement Learning for
Continuous Control [65.00425082663146]
We present a Knowledge Transfer based Multi-task Deep Reinforcement Learning framework (KTM-DRL) for continuous control.
In KTM-DRL, the multi-task agent first leverages an offline knowledge transfer algorithm to quickly learn a control policy from the experience of task-specific teachers.
The experimental results well justify the effectiveness of KTM-DRL and its knowledge transfer and online learning algorithms, as well as its superiority over the state-of-the-art by a large margin.
arXiv Detail & Related papers (2020-10-15T03:26:47Z) - Self-Paced Deep Reinforcement Learning [42.467323141301826]
Curriculum reinforcement learning (CRL) improves the learning speed and stability of an agent by exposing it to a tailored series of tasks throughout learning.
Despite empirical successes, an open question in CRL is how to automatically generate a curriculum for a given reinforcement learning (RL) agent, avoiding manual design.
We propose an answer by interpreting the curriculum generation as an inference problem, where distributions over tasks are progressively learned to approach the target task.
This approach leads to an automatic curriculum generation, whose pace is controlled by the agent, with solid theoretical motivation and easily integrated with deep RL algorithms.
arXiv Detail & Related papers (2020-04-24T15:48:07Z) - Guiding Robot Exploration in Reinforcement Learning via Automated
Planning [6.075903612065429]
Reinforcement learning (RL) enables an agent to learn from trial-and-error experiences toward achieving long-term goals.
automated planning aims to compute plans for accomplishing tasks using action knowledge.
We develop Guided Dyna-Q (GDQ) to enable RL agents to reason with action knowledge to avoid exploring less-relevant states.
arXiv Detail & Related papers (2020-04-23T21:03:30Z) - AutoML-Zero: Evolving Machine Learning Algorithms From Scratch [76.83052807776276]
We show that it is possible to automatically discover complete machine learning algorithms just using basic mathematical operations as building blocks.
We demonstrate this by introducing a novel framework that significantly reduces human bias through a generic search space.
We believe these preliminary successes in discovering machine learning algorithms from scratch indicate a promising new direction in the field.
arXiv Detail & Related papers (2020-03-06T19:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.