論文の概要: How to compare adversarial robustness of classifiers from a global
perspective
- arxiv url: http://arxiv.org/abs/2004.10882v2
- Date: Thu, 15 Oct 2020 20:05:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-10 17:30:16.615120
- Title: How to compare adversarial robustness of classifiers from a global
perspective
- Title(参考訳): 地球規模から見た分類器の逆ロバスト性の比較
- Authors: Niklas Risse, Christina G\"opfert, and Jan Philip G\"opfert
- Abstract要約: 敵対的攻撃は、機械学習モデルの信頼性と信頼性を損なう。
特定の脅威モデルのポイントワイド測度は、現在、分類器の堅牢性を比較するための最も一般的なツールである。
本研究では,最近提案されたロバストネス曲線を用いて,ポイントワイド測度が重要なグローバルな特性を捉えることができないことを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adversarial robustness of machine learning models has attracted considerable
attention over recent years. Adversarial attacks undermine the reliability of
and trust in machine learning models, but the construction of more robust
models hinges on a rigorous understanding of adversarial robustness as a
property of a given model. Point-wise measures for specific threat models are
currently the most popular tool for comparing the robustness of classifiers and
are used in most recent publications on adversarial robustness. In this work,
we use recently proposed robustness curves to show that point-wise measures
fail to capture important global properties that are essential to reliably
compare the robustness of different classifiers. We introduce new ways in which
robustness curves can be used to systematically uncover these properties and
provide concrete recommendations for researchers and practitioners when
assessing and comparing the robustness of trained models. Furthermore, we
characterize scale as a way to distinguish small and large perturbations, and
relate it to inherent properties of data sets, demonstrating that robustness
thresholds must be chosen accordingly. We release code to reproduce all
experiments presented in this paper, which includes a Python module to
calculate robustness curves for arbitrary data sets and classifiers, supporting
a number of frameworks, including TensorFlow, PyTorch and JAX.
- Abstract(参考訳): 機械学習モデルの逆の堅牢性は近年大きな注目を集めている。
敵対的攻撃は機械学習モデルの信頼性と信頼性を損なうが、より堅牢なモデルの構築は、与えられたモデルの特性としての敵対的ロバスト性に対する厳密な理解にかかっている。
特定の脅威モデルのポイントワイド測度は、現在、分類器の堅牢性を比較する最も一般的なツールであり、敵の堅牢性に関する最近の論文で使われている。
本研究では,最近提案されたロバスト性曲線を用いて,異なる分類器のロバスト性を確実に比較する上で必須となる重要なグローバル特性を,ポイントワイズ測度が捉えることができないことを示す。
我々は,これらの特性を体系的に解明するためにロバストネス曲線を用いる新しい方法を紹介し,訓練モデルのロバスト性の評価と比較を行う際に,研究者や実践者に具体的な推奨を与える。
さらに,小規模と大規模の摂動を識別する手段としてスケールを特徴付け,データセットの固有特性と関連づけることにより,頑健性閾値を適切に選択する必要があることを示す。
この記事では、任意のデータセットと分類器のロバストネス曲線を計算するPythonモジュールを含む、この論文で提示されたすべての実験を再現するコードをリリースし、TensorFlow、PyTorch、JAX.jsなど、多数のフレームワークをサポートする。
関連論文リスト
- Assessing Robustness of Machine Learning Models using Covariate Perturbations [0.6749750044497732]
本稿では,機械学習モデルの堅牢性を評価するための包括的フレームワークを提案する。
本研究では、ロバスト性の評価とモデル予測への影響を検討するために、様々な摂動戦略を検討する。
モデル間のロバスト性の比較、モデルの不安定性同定、モデルのロバスト性向上におけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2024-08-02T14:41:36Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
フェデレートされた学習は、微調整された特徴をスキイングし、モデルの堅牢性を損なうリスクがある。
3つのロバスト性指標を導入し、多様なロバストデータセットで実験を行う。
提案手法は,パラメータ効率のよい微調整手法を含む多種多様なシナリオにまたがるロバスト性を著しく向上させる。
論文 参考訳(メタデータ) (2024-01-25T09:18:51Z) - Rethinking Robustness of Model Attributions [24.317595434521504]
多くの属性手法は脆弱であり,これらの手法やモデルトレーニングの改良が提案されている。
まず、ロバスト性に関する既存の指標は、アトリビューションにおける合理的な局所的なシフトを過度に負担する。
本稿では,ロバストネス指標における画素の局所性と属性における画素位置の多様性を組み込んだ既存メトリクスと属性手法の簡易な強化手法を提案する。
論文 参考訳(メタデータ) (2023-12-16T20:20:38Z) - Characterizing Data Point Vulnerability via Average-Case Robustness [29.881355412540557]
対向ロバスト性は標準的なフレームワークであり、二眼レフを通して予測のロバスト性を見る。
我々は、局所的な点数を測定する平均ケースロバストネスと呼ばれる、ロバストネスの相補的な枠組みを考察する。
従来のディープラーニングモデルでは,推定値が正確かつ効率的であることを実証的に示す。
論文 参考訳(メタデータ) (2023-07-26T01:10:29Z) - Preserving Knowledge Invariance: Rethinking Robustness Evaluation of
Open Information Extraction [50.62245481416744]
実世界におけるオープン情報抽出モデルの評価をシミュレートする最初のベンチマークを示す。
我々は、それぞれの例が知識不変のcliqueである大規模なテストベッドを設計し、注釈付けする。
さらにロバスト性計量を解明することにより、その性能が全体の傾きに対して一貫して正確であるならば、モデルはロバストであると判断される。
論文 参考訳(メタデータ) (2023-05-23T12:05:09Z) - GREAT Score: Global Robustness Evaluation of Adversarial Perturbation using Generative Models [60.48306899271866]
GREATスコア(GREAT Score)と呼ばれる新しいフレームワークを提案する。
我々は,ロバストベンチにおける攻撃ベースモデルと比較し,高い相関性を示し,GREATスコアのコストを大幅に削減した。
GREAT Scoreは、プライバシーに敏感なブラックボックスモデルのリモート監査に使用することができる。
論文 参考訳(メタデータ) (2023-04-19T14:58:27Z) - Provable Robustness for Streaming Models with a Sliding Window [51.85182389861261]
オンラインコンテンツレコメンデーションや株式市場分析のようなディープラーニングアプリケーションでは、モデルは過去のデータを使って予測を行う。
入力ストリーム上の固定サイズのスライディングウインドウを使用するモデルに対して、ロバスト性証明を導出する。
私たちの保証は、ストリーム全体の平均モデルパフォーマンスを保ち、ストリームサイズに依存しないので、大きなデータストリームに適しています。
論文 参考訳(メタデータ) (2023-03-28T21:02:35Z) - Estimating the Robustness of Classification Models by the Structure of
the Learned Feature-Space [10.418647759223964]
固定テストセットは、可能なデータバリエーションのごく一部しかキャプチャできないため、制限され、新しい過度なソリューションを生成する傾向にある、と私たちは主張する。
これらの欠点を克服するために、学習した特徴空間の構造から直接モデルのロバスト性を推定することを提案する。
論文 参考訳(メタデータ) (2021-06-23T10:52:29Z) - Consistent Non-Parametric Methods for Adaptive Robustness [26.016647703500887]
標準のロバストな学習フレームワークの大きな欠点は、すべての入力に適用される人工的なロバスト性半径$r$の固定です。
本稿では, 適応ロバスト性のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-02-18T00:44:07Z) - RobustBench: a standardized adversarial robustness benchmark [84.50044645539305]
ロバストネスのベンチマークにおける主な課題は、その評価がしばしばエラーを起こし、ロバストネス過大評価につながることである。
我々は,白箱攻撃と黒箱攻撃のアンサンブルであるAutoAttackを用いて,敵対的ロバスト性を評価する。
分散シフト,キャリブレーション,アウト・オブ・ディストリビューション検出,フェアネス,プライバシリーク,スムースネス,転送性に対するロバスト性の影響を解析した。
論文 参考訳(メタデータ) (2020-10-19T17:06:18Z) - A general framework for defining and optimizing robustness [74.67016173858497]
分類器の様々な種類の堅牢性を定義するための厳密でフレキシブルなフレームワークを提案する。
我々の概念は、分類器の堅牢性は正確性とは無関係な性質と考えるべきであるという仮定に基づいている。
我々は,任意の分類モデルに適用可能な,非常に一般的なロバスト性フレームワークを開発する。
論文 参考訳(メタデータ) (2020-06-19T13:24:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。