Through the Looking Glass: Neural 3D Reconstruction of Transparent
Shapes
- URL: http://arxiv.org/abs/2004.10904v2
- Date: Thu, 23 Jul 2020 05:54:49 GMT
- Title: Through the Looking Glass: Neural 3D Reconstruction of Transparent
Shapes
- Authors: Zhengqin Li, Yu-Ying Yeh, Manmohan Chandraker
- Abstract summary: Complex light paths induced by refraction and reflection have prevented both traditional and deep multiview stereo from solving this problem.
We propose a physically-based network to recover 3D shape of transparent objects using a few images acquired with a mobile phone camera.
Our experiments show successful recovery of high-quality 3D geometry for complex transparent shapes using as few as 5-12 natural images.
- Score: 75.63464905190061
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recovering the 3D shape of transparent objects using a small number of
unconstrained natural images is an ill-posed problem. Complex light paths
induced by refraction and reflection have prevented both traditional and deep
multiview stereo from solving this challenge. We propose a physically-based
network to recover 3D shape of transparent objects using a few images acquired
with a mobile phone camera, under a known but arbitrary environment map. Our
novel contributions include a normal representation that enables the network to
model complex light transport through local computation, a rendering layer that
models refractions and reflections, a cost volume specifically designed for
normal refinement of transparent shapes and a feature mapping based on
predicted normals for 3D point cloud reconstruction. We render a synthetic
dataset to encourage the model to learn refractive light transport across
different views. Our experiments show successful recovery of high-quality 3D
geometry for complex transparent shapes using as few as 5-12 natural images.
Code and data are publicly released.
Related papers
- NeRSP: Neural 3D Reconstruction for Reflective Objects with Sparse Polarized Images [62.752710734332894]
NeRSP is a Neural 3D reconstruction technique for Reflective surfaces with Sparse Polarized images.
We derive photometric and geometric cues from the polarimetric image formation model and multiview azimuth consistency.
We achieve the state-of-the-art surface reconstruction results with only 6 views as input.
arXiv Detail & Related papers (2024-06-11T09:53:18Z) - Holistic Inverse Rendering of Complex Facade via Aerial 3D Scanning [38.72679977945778]
We use multi-view aerial images to reconstruct the geometry, lighting, and material of facades using neural signed distance fields (SDFs)
The experiment demonstrates the superior quality of our method on facade holistic inverse rendering, novel view synthesis, and scene editing compared to state-of-the-art baselines.
arXiv Detail & Related papers (2023-11-20T15:03:56Z) - Neural Fields meet Explicit Geometric Representation for Inverse
Rendering of Urban Scenes [62.769186261245416]
We present a novel inverse rendering framework for large urban scenes capable of jointly reconstructing the scene geometry, spatially-varying materials, and HDR lighting from a set of posed RGB images with optional depth.
Specifically, we use a neural field to account for the primary rays, and use an explicit mesh (reconstructed from the underlying neural field) for modeling secondary rays that produce higher-order lighting effects such as cast shadows.
arXiv Detail & Related papers (2023-04-06T17:51:54Z) - NEMTO: Neural Environment Matting for Novel View and Relighting Synthesis of Transparent Objects [28.62468618676557]
We propose NEMTO, the first end-to-end neural rendering pipeline to model 3D transparent objects.
With 2D images of the transparent object as input, our method is capable of high-quality novel view and relighting synthesis.
arXiv Detail & Related papers (2023-03-21T15:50:08Z) - Delicate Textured Mesh Recovery from NeRF via Adaptive Surface
Refinement [78.48648360358193]
We present a novel framework that generates textured surface meshes from images.
Our approach begins by efficiently initializing the geometry and view-dependency appearance with a NeRF.
We jointly refine the appearance with geometry and bake it into texture images for real-time rendering.
arXiv Detail & Related papers (2023-03-03T17:14:44Z) - Learning Indoor Inverse Rendering with 3D Spatially-Varying Lighting [149.1673041605155]
We address the problem of jointly estimating albedo, normals, depth and 3D spatially-varying lighting from a single image.
Most existing methods formulate the task as image-to-image translation, ignoring the 3D properties of the scene.
We propose a unified, learning-based inverse framework that formulates 3D spatially-varying lighting.
arXiv Detail & Related papers (2021-09-13T15:29:03Z) - Shape From Tracing: Towards Reconstructing 3D Object Geometry and SVBRDF
Material from Images via Differentiable Path Tracing [16.975014467319443]
Differentiable path tracing is an appealing framework as it can reproduce complex appearance effects.
We show how to use differentiable ray tracing to refine an initial coarse mesh and per-mesh-facet material representation.
We also show how to refine initial reconstructions of real-world objects in unconstrained environments.
arXiv Detail & Related papers (2020-12-06T18:55:35Z) - Deep 3D Capture: Geometry and Reflectance from Sparse Multi-View Images [59.906948203578544]
We introduce a novel learning-based method to reconstruct the high-quality geometry and complex, spatially-varying BRDF of an arbitrary object.
We first estimate per-view depth maps using a deep multi-view stereo network.
These depth maps are used to coarsely align the different views.
We propose a novel multi-view reflectance estimation network architecture.
arXiv Detail & Related papers (2020-03-27T21:28:54Z) - Multiview Neural Surface Reconstruction by Disentangling Geometry and
Appearance [46.488713939892136]
We introduce a neural network that simultaneously learns the unknown geometry, camera parameters, and a neural architecture that approximates the light reflected from the surface towards the camera.
We trained our network on real world 2D images of objects with different material properties, lighting conditions, and noisy camera materials from the DTU MVS dataset.
arXiv Detail & Related papers (2020-03-22T10:20:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.