PERMDNN: Efficient Compressed DNN Architecture with Permuted Diagonal
Matrices
- URL: http://arxiv.org/abs/2004.10936v1
- Date: Thu, 23 Apr 2020 02:26:40 GMT
- Title: PERMDNN: Efficient Compressed DNN Architecture with Permuted Diagonal
Matrices
- Authors: Chunhua Deng, Siyu Liao, Yi Xie, Keshab K. Parhi, Xuehai Qian, Bo Yuan
- Abstract summary: Deep neural network (DNN) has emerged as the most important and popular artificial intelligent (AI) technique.
The growth of model size poses a key energy efficiency challenge for the underlying computing platform.
This paper proposes PermDNN, a novel approach to generate and execute hardware-friendly structured sparse DNN models.
- Score: 35.90103072918056
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural network (DNN) has emerged as the most important and popular
artificial intelligent (AI) technique. The growth of model size poses a key
energy efficiency challenge for the underlying computing platform. Thus, model
compression becomes a crucial problem. However, the current approaches are
limited by various drawbacks. Specifically, network sparsification approach
suffers from irregularity, heuristic nature and large indexing overhead. On the
other hand, the recent structured matrix-based approach (i.e., CirCNN) is
limited by the relatively complex arithmetic computation (i.e., FFT), less
flexible compression ratio, and its inability to fully utilize input sparsity.
To address these drawbacks, this paper proposes PermDNN, a novel approach to
generate and execute hardware-friendly structured sparse DNN models using
permuted diagonal matrices. Compared with unstructured sparsification approach,
PermDNN eliminates the drawbacks of indexing overhead, non-heuristic
compression effects and time-consuming retraining. Compared with circulant
structure-imposing approach, PermDNN enjoys the benefits of higher reduction in
computational complexity, flexible compression ratio, simple arithmetic
computation and full utilization of input sparsity. We propose PermDNN
architecture, a multi-processing element (PE) fully-connected (FC)
layer-targeted computing engine. The entire architecture is highly scalable and
flexible, and hence it can support the needs of different applications with
different model configurations. We implement a 32-PE design using CMOS 28nm
technology. Compared with EIE, PermDNN achieves 3.3x~4.8x higher throughout,
5.9x~8.5x better area efficiency and 2.8x~4.0x better energy efficiency on
different workloads. Compared with CirCNN, PermDNN achieves 11.51x higher
throughput and 3.89x better energy efficiency.
Related papers
- FusionLLM: A Decentralized LLM Training System on Geo-distributed GPUs with Adaptive Compression [55.992528247880685]
Decentralized training faces significant challenges regarding system design and efficiency.
We present FusionLLM, a decentralized training system designed and implemented for training large deep neural networks (DNNs)
We show that our system and method can achieve 1.45 - 9.39x speedup compared to baseline methods while ensuring convergence.
arXiv Detail & Related papers (2024-10-16T16:13:19Z) - Resource Constrained Model Compression via Minimax Optimization for
Spiking Neural Networks [11.19282454437627]
Spiking Neural Networks (SNNs) have the characteristics of event-driven and high energy-efficient networks.
It is difficult to deploy these networks on resource-limited edge devices directly.
We propose an improved end-to-end Minimax optimization method for this sparse learning problem.
arXiv Detail & Related papers (2023-08-09T02:50:15Z) - A Low-Complexity Approach to Rate-Distortion Optimized Variable Bit-Rate
Compression for Split DNN Computing [5.3221129103999125]
Split computing has emerged as a recent paradigm for implementation of DNN-based AI workloads.
We present an approach that addresses the challenge of optimizing the rate-accuracy-complexity trade-off.
Our approach is remarkably lightweight, both during training and inference, highly effective and achieves excellent rate-distortion performance.
arXiv Detail & Related papers (2022-08-24T15:02:11Z) - DepthShrinker: A New Compression Paradigm Towards Boosting Real-Hardware
Efficiency of Compact Neural Networks [29.46621102184345]
We propose a framework dubbed DepthShrinker to develop hardware-friendly compact networks.
Our framework delivers hardware-friendly compact networks that outperform both state-of-the-art efficient DNNs and compression techniques.
arXiv Detail & Related papers (2022-06-02T02:32:47Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
Deep Neural Network (DNN) models are essential for practical applications, especially for resource limited devices.
Previous unstructured or structured weight pruning methods can hardly truly accelerate inference.
We propose a generalized weight unification framework at a hardware compatible micro-structured level to achieve high amount of compression and acceleration.
arXiv Detail & Related papers (2021-06-15T17:22:59Z) - Sparse Systolic Tensor Array for Efficient CNN Hardware Acceleration [14.958793135751149]
Convolutional neural network (CNN) inference on mobile devices demands efficient hardware acceleration of low-precision (INT8) general matrix multiplication (GEMM)
Exploiting data sparsity is a common approach to further accelerate GEMM for CNN inference, and in particular, structural sparsity has the advantages of predictable load balancing and very low index overhead.
We address a key architectural challenge with structural sparsity: how to provide support for a range of sparsity levels while maintaining high utilization of the hardware.
arXiv Detail & Related papers (2020-09-04T20:17:42Z) - SmartExchange: Trading Higher-cost Memory Storage/Access for Lower-cost
Computation [97.78417228445883]
We present SmartExchange, an algorithm- hardware co-design framework for energy-efficient inference of deep neural networks (DNNs)
We develop a novel algorithm to enforce a specially favorable DNN weight structure, where each layerwise weight matrix can be stored as the product of a small basis matrix and a large sparse coefficient matrix whose non-zero elements are all power-of-2.
We further design a dedicated accelerator to fully utilize the SmartExchange-enforced weights to improve both energy efficiency and latency performance.
arXiv Detail & Related papers (2020-05-07T12:12:49Z) - ESSOP: Efficient and Scalable Stochastic Outer Product Architecture for
Deep Learning [1.2019888796331233]
Matrix-vector multiplications (MVM) and vector-vector outer product (VVOP) are the two most expensive operations associated with the training of deep neural networks (DNNs)
We introduce efficient techniques to SC for weight update in DNNs with the activation functions required by many state-of-the-art networks.
Our architecture reduces the computational cost by re-using random numbers and replacing certain FP multiplication operations by bit shift scaling.
Hardware design of ESSOP at 14nm technology node shows that, compared to a highly pipelined FP16 multiplier, ESSOP is 82.2% and 93.7% better in energy
arXiv Detail & Related papers (2020-03-25T07:54:42Z) - BLK-REW: A Unified Block-based DNN Pruning Framework using Reweighted
Regularization Method [69.49386965992464]
We propose a new block-based pruning framework that comprises a general and flexible structured pruning dimension as well as a powerful and efficient reweighted regularization method.
Our framework is universal, which can be applied to both CNNs and RNNs, implying complete support for the two major kinds ofintensive computation layers.
It is the first time that the weight pruning framework achieves universal coverage for both CNNs and RNNs with real-time mobile acceleration and no accuracy compromise.
arXiv Detail & Related papers (2020-01-23T03:30:56Z) - PatDNN: Achieving Real-Time DNN Execution on Mobile Devices with
Pattern-based Weight Pruning [57.20262984116752]
We introduce a new dimension, fine-grained pruning patterns inside the coarse-grained structures, revealing a previously unknown point in design space.
With the higher accuracy enabled by fine-grained pruning patterns, the unique insight is to use the compiler to re-gain and guarantee high hardware efficiency.
arXiv Detail & Related papers (2020-01-01T04:52:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.