ESSOP: Efficient and Scalable Stochastic Outer Product Architecture for
Deep Learning
- URL: http://arxiv.org/abs/2003.11256v1
- Date: Wed, 25 Mar 2020 07:54:42 GMT
- Title: ESSOP: Efficient and Scalable Stochastic Outer Product Architecture for
Deep Learning
- Authors: Vinay Joshi, Geethan Karunaratne, Manuel Le Gallo, Irem Boybat,
Christophe Piveteau, Abu Sebastian, Bipin Rajendran and Evangelos Eleftheriou
- Abstract summary: Matrix-vector multiplications (MVM) and vector-vector outer product (VVOP) are the two most expensive operations associated with the training of deep neural networks (DNNs)
We introduce efficient techniques to SC for weight update in DNNs with the activation functions required by many state-of-the-art networks.
Our architecture reduces the computational cost by re-using random numbers and replacing certain FP multiplication operations by bit shift scaling.
Hardware design of ESSOP at 14nm technology node shows that, compared to a highly pipelined FP16 multiplier, ESSOP is 82.2% and 93.7% better in energy
- Score: 1.2019888796331233
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (DNNs) have surpassed human-level accuracy in a variety
of cognitive tasks but at the cost of significant memory/time requirements in
DNN training. This limits their deployment in energy and memory limited
applications that require real-time learning. Matrix-vector multiplications
(MVM) and vector-vector outer product (VVOP) are the two most expensive
operations associated with the training of DNNs. Strategies to improve the
efficiency of MVM computation in hardware have been demonstrated with minimal
impact on training accuracy. However, the VVOP computation remains a relatively
less explored bottleneck even with the aforementioned strategies. Stochastic
computing (SC) has been proposed to improve the efficiency of VVOP computation
but on relatively shallow networks with bounded activation functions and
floating-point (FP) scaling of activation gradients. In this paper, we propose
ESSOP, an efficient and scalable stochastic outer product architecture based on
the SC paradigm. We introduce efficient techniques to generalize SC for weight
update computation in DNNs with the unbounded activation functions (e.g.,
ReLU), required by many state-of-the-art networks. Our architecture reduces the
computational cost by re-using random numbers and replacing certain FP
multiplication operations by bit shift scaling. We show that the ResNet-32
network with 33 convolution layers and a fully-connected layer can be trained
with ESSOP on the CIFAR-10 dataset to achieve baseline comparable accuracy.
Hardware design of ESSOP at 14nm technology node shows that, compared to a
highly pipelined FP16 multiplier design, ESSOP is 82.2% and 93.7% better in
energy and area efficiency respectively for outer product computation.
Related papers
- Energy-Aware FPGA Implementation of Spiking Neural Network with LIF Neurons [0.5243460995467893]
Spiking Neural Networks (SNNs) stand out as a cutting-edge solution for TinyML.
This paper presents a novel SNN architecture based on the 1st Order Leaky Integrate-and-Fire (LIF) neuron model.
A hardware-friendly LIF design is also proposed, and implemented on a Xilinx Artix-7 FPGA.
arXiv Detail & Related papers (2024-11-03T16:42:10Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - A Generalization of Continuous Relaxation in Structured Pruning [0.3277163122167434]
Trends indicate that deeper and larger neural networks with an increasing number of parameters achieve higher accuracy than smaller neural networks.
We generalize structured pruning with algorithms for network augmentation, pruning, sub-network collapse and removal.
The resulting CNN executes efficiently on GPU hardware without computationally expensive sparse matrix operations.
arXiv Detail & Related papers (2023-08-28T14:19:13Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z) - Quantized Neural Networks via {-1, +1} Encoding Decomposition and
Acceleration [83.84684675841167]
We propose a novel encoding scheme using -1, +1 to decompose quantized neural networks (QNNs) into multi-branch binary networks.
We validate the effectiveness of our method on large-scale image classification, object detection, and semantic segmentation tasks.
arXiv Detail & Related papers (2021-06-18T03:11:15Z) - Ps and Qs: Quantization-aware pruning for efficient low latency neural
network inference [56.24109486973292]
We study the interplay between pruning and quantization during the training of neural networks for ultra low latency applications.
We find that quantization-aware pruning yields more computationally efficient models than either pruning or quantization alone for our task.
arXiv Detail & Related papers (2021-02-22T19:00:05Z) - Hybrid In-memory Computing Architecture for the Training of Deep Neural
Networks [5.050213408539571]
We propose a hybrid in-memory computing architecture for the training of deep neural networks (DNNs) on hardware accelerators.
We show that HIC-based training results in about 50% less inference model size to achieve baseline comparable accuracy.
Our simulations indicate HIC-based training naturally ensures that the number of write-erase cycles seen by the devices is a small fraction of the endurance limit of PCM.
arXiv Detail & Related papers (2021-02-10T05:26:27Z) - Efficient Computation Reduction in Bayesian Neural Networks Through
Feature Decomposition and Memorization [10.182119276564643]
In this paper, an efficient BNN inference flow is proposed to reduce the computation cost.
About half of the computations could be eliminated compared to the traditional approach.
We implement our approach in Verilog and synthesise it with 45 $nm$ FreePDK technology.
arXiv Detail & Related papers (2020-05-08T05:03:04Z) - PERMDNN: Efficient Compressed DNN Architecture with Permuted Diagonal
Matrices [35.90103072918056]
Deep neural network (DNN) has emerged as the most important and popular artificial intelligent (AI) technique.
The growth of model size poses a key energy efficiency challenge for the underlying computing platform.
This paper proposes PermDNN, a novel approach to generate and execute hardware-friendly structured sparse DNN models.
arXiv Detail & Related papers (2020-04-23T02:26:40Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
Training deep neural networks on large-scale datasets requires significant hardware resources.
Backpropagation, the workhorse for training these networks, is an inherently sequential process that is difficult to parallelize.
We propose a neuro-biologically-plausible alternative to backprop that can be used to train deep networks.
arXiv Detail & Related papers (2020-02-10T16:20:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.