論文の概要: QURIOUS: Question Generation Pretraining for Text Generation
- arxiv url: http://arxiv.org/abs/2004.11026v1
- Date: Thu, 23 Apr 2020 08:41:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-10 09:38:36.000266
- Title: QURIOUS: Question Generation Pretraining for Text Generation
- Title(参考訳): QURIOUS: テキスト生成のための質問生成準備
- Authors: Shashi Narayan, Gon\c{c}alo Simoes, Ji Ma, Hannah Craighead and Ryan
Mcdonald
- Abstract要約: 本稿では,テキスト生成目標に適合する事前学習手法として質問生成を提案する。
本手法で事前訓練したテキスト生成モデルは,入力の本質を理解するのが得意であり,目的タスクに適した言語モデルである。
- 参考スコア(独自算出の注目度): 13.595014409069584
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent trends in natural language processing using pretraining have shifted
focus towards pretraining and fine-tuning approaches for text generation. Often
the focus has been on task-agnostic approaches that generalize the language
modeling objective. We propose question generation as a pretraining method,
which better aligns with the text generation objectives. Our text generation
models pretrained with this method are better at understanding the essence of
the input and are better language models for the target task. When evaluated on
two text generation tasks, abstractive summarization and answer-focused
question generation, our models result in state-of-the-art performances in
terms of automatic metrics. Human evaluators also found our summaries and
generated questions to be more natural, concise and informative.
- Abstract(参考訳): プリトレーニングを用いた自然言語処理の最近のトレンドは、テキスト生成のための事前学習と微調整のアプローチに焦点を移している。
多くの場合、言語モデリングの目的を一般化するタスクに依存しないアプローチに焦点が当てられている。
本稿では,テキスト生成目標に適合する事前学習手法として質問生成を提案する。
本手法で事前訓練したテキスト生成モデルは,入力の本質を理解するのに優れ,目的タスクの言語モデルとして優れている。
抽象的な要約と回答中心の質問生成という2つのテキスト生成タスクで評価すると、我々のモデルは自動メトリクスの観点から最先端のパフォーマンスをもたらす。
人間の評価者も私たちの要約を見つけ、より自然で簡潔で情報的な質問を生み出しました。
関連論文リスト
- Leveraging Natural Supervision for Language Representation Learning and
Generation [8.083109555490475]
自然発生型監視を用いて,ニューラルネットワークのトレーニングと評価を改善するための3行の作業について述べる。
まず,NLPタスクに対する事前学習言語モデルの性能向上を支援するために,自己指導型学習損失について検討する。
文表現における意味論と構文のアンタングル化にパラフレーズペアを用いるフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-21T17:26:03Z) - Curriculum-Based Self-Training Makes Better Few-Shot Learners for
Data-to-Text Generation [56.98033565736974]
テキスト生成の困難さによって決定される並べ替え順序でラベルのないデータを活用するために,カリキュラムベースの自己学習(CBST)を提案する。
提案手法は、微調整およびタスク適応型事前学習法より優れており、データ・テキスト・ジェネレーションのわずかな設定で最先端の性能を実現することができる。
論文 参考訳(メタデータ) (2022-06-06T16:11:58Z) - A Survey on Retrieval-Augmented Text Generation [53.04991859796971]
Retrieval-augmented text generationは顕著な利点があり、多くのNLPタスクで最先端のパフォーマンスを実現している。
まず、検索拡張生成の一般的なパラダイムを強調し、異なるタスクに応じて注目すべきアプローチをレビューする。
論文 参考訳(メタデータ) (2022-02-02T16:18:41Z) - Pretrained Language Models for Text Generation: A Survey [46.03096493973206]
本稿では、テキスト生成のための事前学習言語モデル(PLM)のトピックにおいて達成された大きな進歩について概説する。
我々は、既存のPLMを異なる入力データに適応させ、生成したテキストの特別な特性を満たす方法について論じる。
論文 参考訳(メタデータ) (2021-05-21T12:27:44Z) - Few-Shot Text Generation with Pattern-Exploiting Training [12.919486518128734]
本稿では,テキスト生成タスクにも基礎となるアイデアが適用可能であることを示す。
最近提案された少数のショットアプローチであるPattern-Exploiting Training(PET)を、テキスト生成タスクで生成言語モデルを微調整するために適用します。
論文 参考訳(メタデータ) (2020-12-22T10:53:07Z) - Facts2Story: Controlling Text Generation by Key Facts [0.0]
自然言語で表現された一連の事実を、より長い物語に展開し、制御された生成タスクを提案する。
我々は、GPT2のような自動回帰型一方向言語モデルは、より良い流動性を生み出すが、彼らは要求された事実に従うのに苦労することを示した。
本稿では,要求されるコンテンツに固執しながら,競争的フラッテンシーを生み出すプラン・アンド・クローズモデル(微調整xlnet)を提案する。
論文 参考訳(メタデータ) (2020-12-08T10:14:29Z) - Positioning yourself in the maze of Neural Text Generation: A
Task-Agnostic Survey [54.34370423151014]
本稿では, ストーリーテリング, 要約, 翻訳など, 世代ごとのタスクインパクトをリレーする手法の構成要素について検討する。
本稿では,学習パラダイム,事前学習,モデリングアプローチ,復号化,各分野における重要な課題について,命令的手法の抽象化を提案する。
論文 参考訳(メタデータ) (2020-10-14T17:54:42Z) - Unsupervised Text Generation by Learning from Search [86.51619839836331]
TGLSは、教師なしテキスト生成のための新しいフレームワークである。
実世界の自然言語生成タスクであるパラフレーズ生成とテキストの形式化におけるTGLSの有効性を示す。
論文 参考訳(メタデータ) (2020-07-09T04:34:48Z) - PALM: Pre-training an Autoencoding&Autoregressive Language Model for
Context-conditioned Generation [92.7366819044397]
自己指導型事前学習は、自然言語の理解と生成のための強力な技術として登場した。
本研究は,大規模未ラベルコーパス上で自己エンコーディングと自己回帰言語モデルを共同で事前学習する新しいスキームをPALMに提示する。
広範な実験により、PALMは様々な言語生成ベンチマークにおいて、新しい最先端の結果を達成することが示されている。
論文 参考訳(メタデータ) (2020-04-14T06:25:36Z) - Pre-training Text Representations as Meta Learning [113.3361289756749]
本稿では,下流タスクを効果的に学習するために,モデルがテキスト表現を学習する能力を直接最適化する学習アルゴリズムを提案する。
マルチタスク事前学習とモデル非依存型メタラーニングの間には,一連のメタトレインステップによる本質的な関係があることが示されている。
論文 参考訳(メタデータ) (2020-04-12T09:05:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。