論文の概要: A Survey on Retrieval-Augmented Text Generation
- arxiv url: http://arxiv.org/abs/2202.01110v1
- Date: Wed, 2 Feb 2022 16:18:41 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-03 17:00:18.178892
- Title: A Survey on Retrieval-Augmented Text Generation
- Title(参考訳): 検索用テキスト生成に関する調査研究
- Authors: Huayang Li and Yixuan Su and Deng Cai and Yan Wang and Lemao Liu
- Abstract要約: Retrieval-augmented text generationは顕著な利点があり、多くのNLPタスクで最先端のパフォーマンスを実現している。
まず、検索拡張生成の一般的なパラダイムを強調し、異なるタスクに応じて注目すべきアプローチをレビューする。
- 参考スコア(独自算出の注目度): 53.04991859796971
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, retrieval-augmented text generation attracted increasing attention
of the computational linguistics community. Compared with conventional
generation models, retrieval-augmented text generation has remarkable
advantages and particularly has achieved state-of-the-art performance in many
NLP tasks. This paper aims to conduct a survey about retrieval-augmented text
generation. It firstly highlights the generic paradigm of retrieval-augmented
generation, and then it reviews notable approaches according to different tasks
including dialogue response generation, machine translation, and other
generation tasks. Finally, it points out some important directions on top of
recent methods to facilitate future research.
- Abstract(参考訳): 近年,検索強化テキスト生成は,計算言語学コミュニティの注目を集めている。
従来の世代モデルと比較すると,検索によるテキスト生成には優れた利点があり,多くのnlpタスクにおいて最先端のパフォーマンスを達成している。
本稿では,検索強化テキスト生成に関する調査を行う。
まず、検索型生成の汎用パラダイムを強調し、次に対話応答生成、機械翻訳、その他の生成タスクなど、さまざまなタスクに応じて注目すべきアプローチをレビューする。
最後に、今後の研究を促進するための最近の手法の上に、いくつかの重要な方向性を指摘する。
関連論文リスト
- Analysis of Plan-based Retrieval for Grounded Text Generation [78.89478272104739]
幻覚は、言語モデルがそのパラメトリック知識の外で生成タスクが与えられるときに起こる。
この制限に対処するための一般的な戦略は、言語モデルに検索メカニズムを注入することである。
我々は,幻覚の頻度をさらに減少させるために,探索のガイドとして計画をどのように利用できるかを分析する。
論文 参考訳(メタデータ) (2024-08-20T02:19:35Z) - Enhancing Retrieval-Augmented Large Language Models with Iterative
Retrieval-Generation Synergy [164.83371924650294]
検索と生成を反復的に同期させるIter-RetGenと呼ばれる手法により,高い性能が得られることを示す。
モデル出力は、タスクを完了するために必要なものを示し、より関連する知識を取得するための情報的コンテキストを提供する。
Iter-RetGenプロセスは、すべての知識を全体として取得し、構造的な制約なしに生成時の柔軟性をほとんど保持します。
論文 参考訳(メタデータ) (2023-05-24T16:17:36Z) - A survey on text generation using generative adversarial networks [0.0]
本研究は, ジェネレーティブ・アドバイサル・ネットワークを用いた最近の研究とテキスト生成の進展について, 徹底的なレビューを行う。
テキスト生成における敵対的学習の使用は、いわゆる「自然な」言語を生成する代替手段を提供するので、有望である。
論文 参考訳(メタデータ) (2022-12-20T17:54:08Z) - Survey of Hallucination in Natural Language Generation [69.9926849848132]
近年,シーケンス間深層学習技術の発展により,自然言語生成(NLG)は指数関数的に向上している。
深層学習に基づく生成は意図しないテキストを幻覚させる傾向があるため、システム性能は低下する。
この調査は、NLGにおける幻覚テキストの課題に取り組む研究者の協力活動を促進するのに役立つ。
論文 参考訳(メタデータ) (2022-02-08T03:55:01Z) - Pretrained Language Models for Text Generation: A Survey [46.03096493973206]
本稿では、テキスト生成のための事前学習言語モデル(PLM)のトピックにおいて達成された大きな進歩について概説する。
我々は、既存のPLMを異なる入力データに適応させ、生成したテキストの特別な特性を満たす方法について論じる。
論文 参考訳(メタデータ) (2021-05-21T12:27:44Z) - Positioning yourself in the maze of Neural Text Generation: A
Task-Agnostic Survey [54.34370423151014]
本稿では, ストーリーテリング, 要約, 翻訳など, 世代ごとのタスクインパクトをリレーする手法の構成要素について検討する。
本稿では,学習パラダイム,事前学習,モデリングアプローチ,復号化,各分野における重要な課題について,命令的手法の抽象化を提案する。
論文 参考訳(メタデータ) (2020-10-14T17:54:42Z) - Unsupervised Text Generation by Learning from Search [86.51619839836331]
TGLSは、教師なしテキスト生成のための新しいフレームワークである。
実世界の自然言語生成タスクであるパラフレーズ生成とテキストの形式化におけるTGLSの有効性を示す。
論文 参考訳(メタデータ) (2020-07-09T04:34:48Z) - QURIOUS: Question Generation Pretraining for Text Generation [13.595014409069584]
本稿では,テキスト生成目標に適合する事前学習手法として質問生成を提案する。
本手法で事前訓練したテキスト生成モデルは,入力の本質を理解するのが得意であり,目的タスクに適した言語モデルである。
論文 参考訳(メタデータ) (2020-04-23T08:41:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。