Hierarchy of quantum correlations under non-Markovian dynamics
- URL: http://arxiv.org/abs/2004.11208v4
- Date: Wed, 16 Feb 2022 14:01:15 GMT
- Title: Hierarchy of quantum correlations under non-Markovian dynamics
- Authors: K.G Paulson, Ekta Panwar, Subhashish Banerjee and R. Srikanth
- Abstract summary: We investigate the dynamics of quantum correlations (QC) under the effects of reservoir memory.
QC is a resource for quantum information and computation tasks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the dynamics of quantum correlations (QC) under the effects of
reservoir memory, as a resource for quantum information and computation tasks.
Quantum correlations of two-qubit systems are used for implementing quantum
teleportation successfully, and for investigating how teleportation fidelity,
violation of Bell-CHSH inequality, quantum steering and entanglement are
connected with each other under the influence of noisy environments. Both
Markovian and non-Markovian channels are considered, and it is shown that the
decay and revival of correlations follow the hierarchy of quantum correlations
in the state space. Noise tolerance of quantum correlations are checked for
different types of unital and non-unital quantum channels, with and without
memory. The quantum speed limit time $(\tau_{QSL})$ is investigated from the
perspective of memory of quantum noise, and the corresponding dynamics is used
to analyze the evolution of quantum correlations. We establish the connection
between information backflow, quantum speed limit time and dynamics of quantum
correlations for non-Markovian quantum channels.
Related papers
- A Study on Thermal Quantum Resources and Probabilistic Teleportation in Spin-1/2 Heisenberg XYZ+DM+KSEA Model under Variable Zeeman Splitting [0.8136541584281987]
Investigation of measures of quantum coherence and quantum correlation in the spin-1/2 Heisenberg XYZ model with added Dzyaloshinsky-Moriya (DM) and Kaplan--Shekhtman--Entin-Wohlman--Aharony (KSEA) interactions.
arXiv Detail & Related papers (2024-05-25T16:13:40Z) - Robustness of quantum correlation in quantum energy teleportation [0.0]
We present the evolution of quantum correlation in the quantum energy teleportation (QET) protocol using quantum discord.
In the QET protocol, where local observations and conditional operations are repeated, quantum correlations become nontrivial because of the statistical creation of mixed states.
arXiv Detail & Related papers (2024-02-01T10:35:09Z) - Quantum teleportation and dynamics of quantum coherence and metrological
non-classical correlations for open two-qubit systems: A study of Markovian
and non-Markovian regimes [0.0]
We study the dynamics of non-classical correlations and quantum coherence in open quantum systems.
Our focus is on a system of two qubits in two distinct physical situations.
We establish a quantum teleportation strategy based on the two different physical scenarios.
arXiv Detail & Related papers (2023-09-05T11:41:04Z) - Quantum speed limit for the creation and decay of quantum correlations [0.0]
We derive Margolus-Levitin and Mandelstamm-Tamm type bound on the quantum speed limit time for the creation and decay of quantum correlations.
We consider entanglement and quantum discord measures of quantum correlations, quantified using the Bures distance-based measure.
arXiv Detail & Related papers (2022-05-24T08:00:40Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Enhancing nonclassical bosonic correlations in a Quantum Walk network
through experimental control of disorder [50.591267188664666]
We experimentally realize a controllable inhomogenous Quantum Walk dynamics.
We observe two photon states which exhibit an enhancement in the quantum correlations between two modes of the network.
arXiv Detail & Related papers (2021-02-09T10:57:00Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z) - Quantum Information Scrambling and Entanglement in Bipartite Quantum
States [0.0]
We establish the mathematical connections among the quantifiers known as quantum information scrambling.
We investigate the influence of QI scrambling on entanglement in two qubits prepared in Bell states.
arXiv Detail & Related papers (2020-01-17T10:22:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.