L-CO-Net: Learned Condensation-Optimization Network for Clinical
Parameter Estimation from Cardiac Cine MRI
- URL: http://arxiv.org/abs/2004.11253v1
- Date: Tue, 21 Apr 2020 23:59:07 GMT
- Title: L-CO-Net: Learned Condensation-Optimization Network for Clinical
Parameter Estimation from Cardiac Cine MRI
- Authors: S. M. Kamrul Hasan, Cristian A. Linte
- Abstract summary: We implement a fully convolutional segmenter featuring both a learned group structure and a regularized weight-pruner.
We validated our framework on the ACDC dataset featuring one healthy and four pathology groups imaged throughout the cardiac cycle.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we implement a fully convolutional segmenter featuring both a
learned group structure and a regularized weight-pruner to reduce the high
computational cost in volumetric image segmentation. We validated our framework
on the ACDC dataset featuring one healthy and four pathology groups imaged
throughout the cardiac cycle. Our technique achieved Dice scores of 96.8% (LV
blood-pool), 93.3% (RV blood-pool) and 90.0% (LV Myocardium) with five-fold
cross-validation and yielded similar clinical parameters as those estimated
from the ground truth segmentation data. Based on these results, this technique
has the potential to become an efficient and competitive cardiac image
segmentation tool that may be used for cardiac computer-aided diagnosis,
planning, and guidance applications.
Related papers
- An Improved Approach for Cardiac MRI Segmentation based on 3D UNet Combined with Papillary Muscle Exclusion [0.0]
It is crucial to develop robust algorithms for the precise segmentation of the heart structure during different phases.
In this work, an improved 3D UNet model is introduced to segment the myocardium and LV, while excluding papillary muscles.
For the practical testing of the proposed framework, a total of 8,400 cardiac MRI images were collected and analysed.
arXiv Detail & Related papers (2024-10-09T12:19:58Z) - Classification, Regression and Segmentation directly from k-Space in Cardiac MRI [11.690226907936903]
We propose KMAE, a Transformer-based model specifically designed to process k-space data directly.
KMAE can handle critical cardiac disease classification, relevant phenotype regression, and cardiac segmentation tasks.
We utilize this model to investigate the potential of k-space-based diagnosis in cardiac MRI.
arXiv Detail & Related papers (2024-07-29T15:35:35Z) - Towards Unifying Anatomy Segmentation: Automated Generation of a
Full-body CT Dataset via Knowledge Aggregation and Anatomical Guidelines [113.08940153125616]
We generate a dataset of whole-body CT scans with $142$ voxel-level labels for 533 volumes providing comprehensive anatomical coverage.
Our proposed procedure does not rely on manual annotation during the label aggregation stage.
We release our trained unified anatomical segmentation model capable of predicting $142$ anatomical structures on CT data.
arXiv Detail & Related papers (2023-07-25T09:48:13Z) - Accurate Fine-Grained Segmentation of Human Anatomy in Radiographs via
Volumetric Pseudo-Labeling [66.75096111651062]
We created a large-scale dataset of 10,021 thoracic CTs with 157 labels.
We applied an ensemble of 3D anatomy segmentation models to extract anatomical pseudo-labels.
Our resulting segmentation models demonstrated remarkable performance on CXR.
arXiv Detail & Related papers (2023-06-06T18:01:08Z) - On the Automated Segmentation of Epicardial and Mediastinal Cardiac
Adipose Tissues Using Classification Algorithms [0.9176056742068814]
This work proposes a novel technique for the automatic segmentation of cardiac fat pads.
The technique is based on applying classification algorithms to the segmentation of cardiac CT images.
Experimental results have shown that the mean accuracy for the classification of epicardial and mediastinal fats has been 98.4%.
arXiv Detail & Related papers (2022-08-30T15:57:02Z) - MyoPS: A Benchmark of Myocardial Pathology Segmentation Combining
Three-Sequence Cardiac Magnetic Resonance Images [84.02849948202116]
This work defines a new task of medical image analysis, i.e., to perform myocardial pathology segmentation (MyoPS)
MyoPS combines three-sequence cardiac magnetic resonance (CMR) images, which was first proposed in the MyoPS challenge, in conjunction with MICCAI 2020.
The challenge provided 45 paired and pre-aligned CMR images, allowing algorithms to combine the complementary information from the three CMR sequences for pathology segmentation.
arXiv Detail & Related papers (2022-01-10T06:37:23Z) - Systematic Clinical Evaluation of A Deep Learning Method for Medical
Image Segmentation: Radiosurgery Application [48.89674088331313]
We systematically evaluate a Deep Learning (DL) method in a 3D medical image segmentation task.
Our method is integrated into the radiosurgery treatment process and directly impacts the clinical workflow.
arXiv Detail & Related papers (2021-08-21T16:15:40Z) - Multi-class probabilistic atlas-based whole heart segmentation method in
cardiac CT and MRI [4.144197343838299]
This article proposes a framework for multi-class whole heart segmentation employing non-rigid registration-based probabilistic atlas.
We also propose a non-rigid registration pipeline utilizing a multi-resolution strategy for obtaining the highest attainable mutual information.
The proposed approach exhibits an encouraging achievement, yielding a mean volume overlapping error of 14.5 % for CT scans.
arXiv Detail & Related papers (2021-02-03T01:02:09Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z) - CondenseUNet: A Memory-Efficient Condensely-Connected Architecture for
Bi-ventricular Blood Pool and Myocardium Segmentation [0.0]
We propose a novel memory-efficient Convolutional Neural Network (CNN) architecture as a modification of both CondenseNet and DenseNet.
Our experiments show that the proposed architecture runs on the Automated Cardiac Diagnosis Challenge dataset.
arXiv Detail & Related papers (2020-04-05T16:34:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.