Multi-class probabilistic atlas-based whole heart segmentation method in
cardiac CT and MRI
- URL: http://arxiv.org/abs/2102.01822v1
- Date: Wed, 3 Feb 2021 01:02:09 GMT
- Title: Multi-class probabilistic atlas-based whole heart segmentation method in
cardiac CT and MRI
- Authors: Tarun Kanti Ghosh, Md. Kamrul Hasan, Shidhartho Roy, Md. Ashraful
Alam, Eklas Hossain, Mohiuddin Ahmad
- Abstract summary: This article proposes a framework for multi-class whole heart segmentation employing non-rigid registration-based probabilistic atlas.
We also propose a non-rigid registration pipeline utilizing a multi-resolution strategy for obtaining the highest attainable mutual information.
The proposed approach exhibits an encouraging achievement, yielding a mean volume overlapping error of 14.5 % for CT scans.
- Score: 4.144197343838299
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate and robust whole heart substructure segmentation is crucial in
developing clinical applications, such as computer-aided diagnosis and
computer-aided surgery. However, segmentation of different heart substructures
is challenging because of inadequate edge or boundary information, the
complexity of the background and texture, and the diversity in different
substructures' sizes and shapes. This article proposes a framework for
multi-class whole heart segmentation employing non-rigid registration-based
probabilistic atlas incorporating the Bayesian framework. We also propose a
non-rigid registration pipeline utilizing a multi-resolution strategy for
obtaining the highest attainable mutual information between the moving and
fixed images. We further incorporate non-rigid registration into the
expectation-maximization algorithm and implement different deep convolutional
neural network-based encoder-decoder networks for ablation studies. All the
extensive experiments are conducted utilizing the publicly available dataset
for the whole heart segmentation containing 20 MRI and 20 CT cardiac images.
The proposed approach exhibits an encouraging achievement, yielding a mean
volume overlapping error of 14.5 % for CT scans exceeding the state-of-the-art
results by a margin of 1.3 % in terms of the same metric. As the proposed
approach provides better-results to delineate the different substructures of
the heart, it can be a medical diagnostic aiding tool for helping experts with
quicker and more accurate results.
Related papers
- Preserving Cardiac Integrity: A Topology-Infused Approach to Whole Heart Segmentation [6.495726693226574]
Whole heart segmentation (WHS) supports cardiovascular disease diagnosis, disease monitoring, treatment planning, and prognosis.
This paper introduces a new topology-preserving module that is integrated into deep neural networks.
The implementation achieves anatomically plausible segmentation by using learned topology-preserving fields, which are based entirely on 3D convolution and are therefore very effective for 3D voxel data.
arXiv Detail & Related papers (2024-10-14T14:32:05Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
The problem of how to assess cross-modality medical image synthesis has been largely unexplored.
We propose a new metric K-CROSS to spur progress on this challenging problem.
K-CROSS uses a pre-trained multi-modality segmentation network to predict the lesion location.
arXiv Detail & Related papers (2023-07-10T01:26:48Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
Current medical workflow requires manual delineation of organs-at-risk (OAR)
In this work, we aim to introduce a unified 3D pipeline for OAR localization-segmentation.
Our proposed framework fully enables the exploitation of 3D context information inherent in medical imaging.
arXiv Detail & Related papers (2022-03-01T17:08:41Z) - AWSnet: An Auto-weighted Supervision Attention Network for Myocardial
Scar and Edema Segmentation in Multi-sequence Cardiac Magnetic Resonance
Images [23.212429566838203]
We develop a novel auto-weighted supervision framework to tackle the scar and edema segmentation from multi-sequence CMR data.
We also design a coarse-to-fine framework to boost the small myocardial pathology region segmentation with shape prior knowledge.
Our method is promising in advancing the myocardial pathology assessment on multi-sequence CMR data.
arXiv Detail & Related papers (2022-01-14T08:59:54Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - Cardiac Segmentation on CT Images through Shape-Aware Contour Attentions [1.212901554957637]
The cardiac organ consists of multiple substructures, i.e., ventricles, atriums, aortas, arteries, veins, and myocardium.
These cardiac substructures are proximate to each other and have indiscernible boundaries.
We introduce a novel model to exploit shape and boundary-aware features.
arXiv Detail & Related papers (2021-05-27T13:54:59Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Learning Directional Feature Maps for Cardiac MRI Segmentation [13.389141642517762]
We propose a novel method to exploit the directional feature maps, which can simultaneously strengthen the differences between classes and the similarities within classes.
Specifically, we perform cardiac segmentation and learn a direction field pointing away from the nearest cardiac tissue boundary to each pixel.
Based on the learned direction field, we then propose a feature rectification and fusion (FRF) module to improve the original segmentation features.
arXiv Detail & Related papers (2020-07-22T11:31:04Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z) - CondenseUNet: A Memory-Efficient Condensely-Connected Architecture for
Bi-ventricular Blood Pool and Myocardium Segmentation [0.0]
We propose a novel memory-efficient Convolutional Neural Network (CNN) architecture as a modification of both CondenseNet and DenseNet.
Our experiments show that the proposed architecture runs on the Automated Cardiac Diagnosis Challenge dataset.
arXiv Detail & Related papers (2020-04-05T16:34:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.