Hong-Ou-Mandel interference of unconventional temporal laser modes
- URL: http://arxiv.org/abs/2004.11259v2
- Date: Wed, 17 Jun 2020 07:52:14 GMT
- Title: Hong-Ou-Mandel interference of unconventional temporal laser modes
- Authors: Sascha Agne, Jeongwan Jin, Katanya B. Kuntz, Filippo M. Miatto,
Jean-Philippe Bourgoin and Thomas Jennewein
- Abstract summary: The Hong-Ou-Mandel (HOM) effect ranks among the most notable quantum interference phenomena, and is central to many applications in quantum technologies.
Much less studied is when the fields share coherence (continuous-wave lasers) or mode envelope properties (pulsed lasers)
We observe structured HOM interference from a continuous-wave laser via fast polarization modulation and time-resolved single photon detection fast enough to resolve these structured HOM dips.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Hong-Ou-Mandel (HOM) effect ranks among the most notable quantum
interference phenomena, and is central to many applications in quantum
technologies. The fundamental effect appears when two independent and
indistinguishable photons are superimposed on a beam splitter, which achieves a
complete suppression of coincidences between the two output ports. Much less
studied, however, is when the fields share coherence (continuous-wave lasers)
or mode envelope properties (pulsed lasers). In this case, we expect the
existence of two distinct and concurrent HOM interference regimes: the
traditional HOM dip on the coherence length time scale, and a structured HOM
interference pattern on the pulse length scale. We develop a theoretical
framework that describes HOM interference for laser fields having arbitrary
temporal waveforms and only partial overlap in time. We observe structured HOM
interference from a continuous-wave laser via fast polarization modulation and
time-resolved single photon detection fast enough to resolve these structured
HOM dips.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Laser-target symmetry-breaking in high harmonic generation: from frequency shift to odd-even intensity modulation [2.867517731896504]
We provide a comprehensive picture of the frequency shift and odd-even intensity modulation in high-order harmonic generation.
By tuning asymmetric laser-target systems, we discover a transition from the harmonic frequency shift to the odd-even intensity modulation.
arXiv Detail & Related papers (2024-06-13T03:40:37Z) - Observation of the First-Order Interference Fringes Beyond Coherence
Length Employing Commercial Continuous-wave Multi-mode Laser Diode: A Sight
of Two-photon Interference [3.5516371712310306]
We report an experiment of observation of classical double-slit interference fringes of two-photon interference.
The temporal stable and clearly visible spatial-distributed pattern, i.e. first-order interference fringes, was observed.
We reveal a new method to perform two-photon first-order interference, and this help to understand the nature of two-photon interference.
arXiv Detail & Related papers (2024-02-23T01:28:20Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Controlling Frequency-Domain Hong-Ou-Mandel Interference via
Electromagnetically Induced Transparency [5.467400475482669]
Hong-Ou-Mandel (HOM) interference is a compelling quantum phenomenon that demonstrates the nonclassical nature of single photons.
In this study, we investigate an electromagnetically induced transparency-based double-$Lambda$ four-wave mixing system.
arXiv Detail & Related papers (2023-02-14T08:22:09Z) - Laser-assisted Fano resonance: attosecond quantum control and dynamical
imaging [5.028785861056659]
A Fano resonance arises from the pathway interference between discrete and continuum states.
We introduce the concept of a laser-assisted Fano resonance, created from two interferometric pathways that are coupled together by an additional laser field.
arXiv Detail & Related papers (2023-02-08T14:41:18Z) - Coherently excited Hong-Ou-Mandel effects using frequency-path
correlation [0.0]
The Hong-Ou-Mandel (HOM) effect relates to the two-photon intensity correlation on a beam splitter, resulting in a nonclassical photon-bunching phenomenon.
Here, a coherence version of the HOM effect is proposed and analyzed to understand the fundamental physics of the anticorrelation and entanglement.
arXiv Detail & Related papers (2022-04-04T23:55:22Z) - Heisenberg treatment of multiphoton pulses in waveguide QED with
time-delayed feedback [62.997667081978825]
We propose a projection onto a complete set of states in the Hilbert space to decompose the multi-time correlations into single-time matrix elements.
We consider the paradigmatic example of a two-level system that couples to a semi-infinite waveguide and interacts with quantum light pulses.
arXiv Detail & Related papers (2021-11-04T12:29:25Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Collective radiation from distant emitters [63.391402501241195]
We show that the spectrum of the radiated field exhibits non-Markovian features such as linewidth broadening beyond standard superradiance.
We discuss a proof-of-concept implementation of our results in a superconducting circuit platform.
arXiv Detail & Related papers (2020-06-22T19:03:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.