Coherently excited Hong-Ou-Mandel effects using frequency-path
correlation
- URL: http://arxiv.org/abs/2204.01897v3
- Date: Mon, 3 Jul 2023 07:38:31 GMT
- Title: Coherently excited Hong-Ou-Mandel effects using frequency-path
correlation
- Authors: B. S. Ham
- Abstract summary: The Hong-Ou-Mandel (HOM) effect relates to the two-photon intensity correlation on a beam splitter, resulting in a nonclassical photon-bunching phenomenon.
Here, a coherence version of the HOM effect is proposed and analyzed to understand the fundamental physics of the anticorrelation and entanglement.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nonlocal quantum correlation has been the main issue of quantum mechanics
over the last century. The Hong-Ou-Mandel (HOM) effect relates to the
two-photon intensity correlation on a beam splitter, resulting in a
nonclassical photon-bunching phenomenon. The HOM effect has been used to verify
the quantum feature via Bell measurements for quantum technologies such as
quantum repeaters and photonics quantum computing. Here, a coherence version of
the HOM effect is proposed and analyzed to understand the fundamental physics
of the anticorrelation and entanglement. For this, frequency-correlated
coherent photon pairs are prepared in an independent set of Mach-Zhender
interferometers (MZI) using a synchronized pair of modulators from an
attenuated laser. For the HOM effect, the phase relation between
frequency-correlated photons plays an essential role. For the product-basis
randomness, the symmetrically modulated two independent MZIs are combined
together incoherently. A classical intensity product between two independent
photodetectors is also discussed for the same HOM effect in a selective
macroscopic measurement scheme.
Related papers
- Amplification of quantum transfer and quantum ratchet [56.47577824219207]
We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
arXiv Detail & Related papers (2023-12-31T14:04:43Z) - Creating mirror-mirror quantum correlations in optomechanics [0.0]
We study the transfer of quantum correlations between two movable mirrors of two Fabry-P'erot cavities separated via broadband squeezed light and coupled via photon hopping process.
arXiv Detail & Related papers (2023-08-11T02:38:26Z) - Macroscopic quantum correlation in a delayed-choice quantum eraser
scheme [0.0]
Coherence interpretation has been conducted for the delayed-choice quantum eraser using coherent photon pairs.
Quantum entanglement is known as a unique feature of quantum mechanics, which cannot be obtained from classical physics.
arXiv Detail & Related papers (2022-11-20T01:25:43Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Coherence interpretation of the Hong-Ou-Mandel effect [0.0]
Two-photon intensity correlation of the Hong-Ou-Mandel (HOM) effect has been intensively studied over the last several decades.
Here, a coherence approach based on the wave nature of a photon is used to interpret HOM effect based on entangled photon pairs.
arXiv Detail & Related papers (2022-03-26T03:53:44Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Analysis of photon characteristics in anticorrelation of a
Hong-Ou-Mandel dip for on-demand quantum correlation control [0.0]
The Hong-Ou-Mandel (HOM) dip is the most important test tool for direct proof of entanglement between paired photons.
This study sheds light on deterministic quantum correlation control and opens the door to potential applications of on-demand quantum information science.
arXiv Detail & Related papers (2021-05-25T05:00:49Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Macroscopically entangled light fields: A quantum laser [0.0]
A novel method of macroscopically entangled light-pair generation is presented for a quantum laser.
The wave nature of photons is applied for collective phase control of coherent fields.
For the proof of principle, the entanglement between output light fields from an MZI is examined.
arXiv Detail & Related papers (2021-02-09T06:02:11Z) - Quantum Borrmann effect for dissipation-immune photon-photon
correlations [137.6408511310322]
We study theoretically the second-order correlation function $g(2)(t)$ for photons transmitted through a periodic Bragg-spaced array of superconducting qubits, coupled to a waveguide.
We demonstrate that photon bunching and anti-bunching persist much longer than both radiative and non-radiative lifetimes of a single qubit.
arXiv Detail & Related papers (2020-09-29T14:37:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.