論文の概要: Pairwise Supervised Hashing with Bernoulli Variational Auto-Encoder and
Self-Control Gradient Estimator
- arxiv url: http://arxiv.org/abs/2005.10477v1
- Date: Thu, 21 May 2020 06:11:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-30 22:44:29.341050
- Title: Pairwise Supervised Hashing with Bernoulli Variational Auto-Encoder and
Self-Control Gradient Estimator
- Title(参考訳): Bernoulli変分オートエンコーダと自己制御勾配推定器を用いたペアワイズ監視ハッシュ
- Authors: Siamak Zamani Dadaneh, Shahin Boluki, Mingzhang Yin, Mingyuan Zhou,
Xiaoning Qian
- Abstract要約: バイナリ潜在変数を持つ変分自動エンコーダ(VAE)は、文書検索の精度の観点から最先端のパフォーマンスを提供する。
本稿では、クラス内類似度とクラス間類似度に報いるために、個別潜伏型VAEを用いたペアワイズ損失関数を提案する。
この新しいセマンティックハッシュフレームワークは、最先端技術よりも優れたパフォーマンスを実現する。
- 参考スコア(独自算出の注目度): 62.26981903551382
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic hashing has become a crucial component of fast similarity search in
many large-scale information retrieval systems, in particular, for text data.
Variational auto-encoders (VAEs) with binary latent variables as hashing codes
provide state-of-the-art performance in terms of precision for document
retrieval. We propose a pairwise loss function with discrete latent VAE to
reward within-class similarity and between-class dissimilarity for supervised
hashing. Instead of solving the optimization relying on existing biased
gradient estimators, an unbiased low-variance gradient estimator is adopted to
optimize the hashing function by evaluating the non-differentiable loss
function over two correlated sets of binary hashing codes to control the
variance of gradient estimates. This new semantic hashing framework achieves
superior performance compared to the state-of-the-arts, as demonstrated by our
comprehensive experiments.
- Abstract(参考訳): 多くの大規模情報検索システム、特にテキストデータにおいて、セマンティックハッシュは高速類似検索の重要な構成要素となっている。
ハッシュコードとしてのバイナリ潜在変数を持つ変分自動エンコーダ(VAE)は、文書検索の精度の観点から最先端のパフォーマンスを提供する。
本稿では、クラス内類似度とクラス間類似度に報いるために、個別潜伏型VAEを用いたペアワイズ損失関数を提案する。
既存の偏り勾配推定器を頼りに最適化する代わりに、偏りのない低分散勾配推定器を用いて、2つの相関した2進ハッシュ符号上の非微分損失関数を評価してハッシュ関数を最適化し、勾配推定の分散を制御する。
この新たなセマンティックハッシュフレームワークは,我々の総合実験で示すように,最先端技術よりも優れた性能を実現する。
関連論文リスト
- Deep Self-Adaptive Hashing for Image Retrieval [16.768754022585057]
2つの特殊設計で意味情報を適応的にキャプチャするtextbfDeep Self-Adaptive Hashing(DSAH)モデルを提案する。
まず,近辺型類似度行列を構築し,その初期類似度行列を新しい更新戦略で改良する。
第2に、PICを用いたデータペアの優先度を測定し、それらに適応重みを割り当てる。これは、より異種なデータペアがハッシュ学習のためのより差別的な情報を含んでいるという仮定に依存する。
論文 参考訳(メタデータ) (2021-08-16T13:53:20Z) - ESAD: End-to-end Deep Semi-supervised Anomaly Detection [85.81138474858197]
正規データと異常データの間のKL偏差を計測する新たな目的関数を提案する。
提案手法は,複数のベンチマークデータセットの最先端性能を著しく上回っている。
論文 参考訳(メタデータ) (2020-12-09T08:16:35Z) - CIMON: Towards High-quality Hash Codes [63.37321228830102]
我々はtextbfComprehensive stextbfImilarity textbfMining と ctextbfOnsistency leartextbfNing (CIMON) という新しい手法を提案する。
まず、グローバルな洗練と類似度統計分布を用いて、信頼性とスムーズなガイダンスを得る。第二に、意味的整合性学習とコントラスト的整合性学習の両方を導入して、乱不変と差別的ハッシュコードの両方を導出する。
論文 参考訳(メタデータ) (2020-10-15T14:47:14Z) - AP-Loss for Accurate One-Stage Object Detection [49.13608882885456]
一段階の物体検出器は、分類損失と局所化損失を同時に最適化することによって訓練される。
前者は、多数のアンカーのため、非常に前景と後方のアンカーの不均衡に悩まされる。
本稿では,一段検知器の分類タスクをランキングタスクに置き換える新しい枠組みを提案する。
論文 参考訳(メタデータ) (2020-08-17T13:22:01Z) - Self-Supervised Bernoulli Autoencoders for Semi-Supervised Hashing [1.8899300124593648]
本稿では,変分オートエンコーダに基づくハッシュ手法のロバスト性と,監督の欠如について検討する。
本稿では,モデルがラベル分布予測を用いて一対の目的を実現する新しい監視手法を提案する。
実験の結果,いずれの手法もハッシュコードの品質を大幅に向上させることができることがわかった。
論文 参考訳(メタデータ) (2020-07-17T07:47:10Z) - Generative Semantic Hashing Enhanced via Boltzmann Machines [61.688380278649056]
既存の生成ハッシュ法は、主に後部分布の分解形式を仮定する。
本稿では,ボルツマンマシンの分布を検索後部として利用することを提案する。
ハッシュコード内の異なるビット間の相関関係を効果的にモデル化することにより、我々のモデルは大幅な性能向上を達成できることを示す。
論文 参考訳(メタデータ) (2020-06-16T01:23:39Z) - Learning to hash with semantic similarity metrics and empirical KL
divergence [3.04585143845864]
ハッシュの学習は、大規模データベースからの近接探索を正確に、そして近似的に行うための効率的なパラダイムである。
バイナリハッシュコードは典型的には、CNNから出力特徴を丸め、イメージから抽出される。
i) 学習特徴の相対的なハッシュコード距離を目標値と一致するように促進する新規な損失関数により, (i) を克服する。
我々は、ネットワーク出力とバイナリターゲット分布のKL分散の微分可能な推定を通じて、(ii)に対処し、その結果、特徴がバイナリに丸められたときの情報損失を最小限に抑える。
論文 参考訳(メタデータ) (2020-05-11T08:20:26Z) - Reinforcing Short-Length Hashing [61.75883795807109]
既存の手法は、非常に短いハッシュコードを用いた検索性能が劣っている。
本研究では, 短寿命ハッシュ(RSLH)を改良する新しい手法を提案する。
本稿では,ハッシュ表現とセマンティックラベルの相互再構成を行い,セマンティック情報を保存する。
3つの大規模画像ベンチマークの実験は、様々な短いハッシュシナリオ下でのRSLHの優れた性能を示す。
論文 参考訳(メタデータ) (2020-04-24T02:23:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。