論文の概要: Extrapolation-based Prediction-Correction Methods for Time-varying
Convex Optimization
- arxiv url: http://arxiv.org/abs/2004.11709v4
- Date: Thu, 4 May 2023 10:51:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-05 20:49:31.900719
- Title: Extrapolation-based Prediction-Correction Methods for Time-varying
Convex Optimization
- Title(参考訳): 時変凸最適化のための外挿に基づく予測補正法
- Authors: Nicola Bastianello, Ruggero Carli, Andrea Simonetto
- Abstract要約: 本稿では,予測補正パラダイムに基づくオンライン最適化のアルゴリズムについて論じる。
本稿では,外挿に基づく新しい予測手法を提案する。
本稿では,信号処理や機械学習,ロボット工学といった問題に適用したアルゴリズムの経験的性能について論じる。
- 参考スコア(独自算出の注目度): 5.768816587293478
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we focus on the solution of online optimization problems that
arise often in signal processing and machine learning, in which we have access
to streaming sources of data. We discuss algorithms for online optimization
based on the prediction-correction paradigm, both in the primal and dual space.
In particular, we leverage the typical regularized least-squares structure
appearing in many signal processing problems to propose a novel and tailored
prediction strategy, which we call extrapolation-based. By using tools from
operator theory, we then analyze the convergence of the proposed methods as
applied both to primal and dual problems, deriving an explicit bound for the
tracking error, that is, the distance from the time-varying optimal solution.
We further discuss the empirical performance of the algorithm when applied to
signal processing, machine learning, and robotics problems.
- Abstract(参考訳): 本稿では、信号処理や機械学習で頻繁に発生するオンライン最適化問題の解決に焦点をあて、データのストリーミングソースにアクセスできるようにする。
予備空間と双対空間の両方において、予測補正パラダイムに基づくオンライン最適化のアルゴリズムについて論じる。
特に,多くの信号処理問題に現れる正規化最小二乗構造を利用して,外挿に基づく新しい予測手法を提案する。
演算子理論からのツールを用いて、原始問題と双対問題の両方に適用された提案手法の収束を解析し、追跡誤差の明示的な境界、すなわち時間変化最適解からの距離を導出する。
さらに,信号処理や機械学習,ロボット工学といった問題に適用したアルゴリズムの実証的性能について論じる。
関連論文リスト
- Maximum Optimality Margin: A Unified Approach for Contextual Linear
Programming and Inverse Linear Programming [10.06803520598035]
我々は、下流最適化の最適条件によって機械学習損失関数が機能する最大最適マージンと呼ばれる問題に対する新しいアプローチを開発する。
論文 参考訳(メタデータ) (2023-01-26T17:53:38Z) - Socio-cognitive Optimization of Time-delay Control Problems using
Evolutionary Metaheuristics [89.24951036534168]
メタヒューリスティックス(Metaheuristics)は、古典的なアプローチでは解決できない難解な問題を解くために使用される普遍的な最適化アルゴリズムである。
本稿では,キャストに基づく新しい社会認知メタヒューリスティックの構築を目標とし,このアルゴリズムのいくつかのバージョンを時間遅延システムモデルの最適化に適用する。
論文 参考訳(メタデータ) (2022-10-23T22:21:10Z) - On the Convergence of Distributed Stochastic Bilevel Optimization
Algorithms over a Network [55.56019538079826]
バイレベル最適化は、幅広い機械学習モデルに適用されている。
既存のアルゴリズムの多くは、分散データを扱うことができないように、シングルマシンの設定を制限している。
そこで我々は,勾配追跡通信機構と2つの異なる勾配に基づく分散二段階最適化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-06-30T05:29:52Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
相互依存信号のデータセットは、列が強い依存を示す行列として定義される。
ニューラルネットワークは、事前に構造として機能し、基礎となる信号相互依存性を明らかにするために使用される。
ディープ・アンローリングとディープ・平衡に基づくアルゴリズムが開発され、高度に解釈可能で簡潔なディープ・ラーニング・ベース・アーキテクチャを形成する。
論文 参考訳(メタデータ) (2022-03-29T21:00:39Z) - Teaching Networks to Solve Optimization Problems [13.803078209630444]
反復解法をトレーニング可能なパラメトリック集合関数に置き換えることを提案する。
このようなパラメトリックな(集合)関数を学習することで、様々な古典的最適化問題を解くことができることを示す。
論文 参考訳(メタデータ) (2022-02-08T19:13:13Z) - Outlier-Robust Sparse Estimation via Non-Convex Optimization [73.18654719887205]
空間的制約が存在する場合の高次元統計量と非破壊的最適化の関連について検討する。
これらの問題に対する新規で簡単な最適化法を開発した。
結論として、効率よくステーションに収束する一階法は、これらのタスクに対して効率的なアルゴリズムを導出する。
論文 参考訳(メタデータ) (2021-09-23T17:38:24Z) - An Online Prediction Approach Based on Incremental Support Vector
Machine for Dynamic Multiobjective Optimization [19.336520152294213]
インクリメンタルサポートベクトルマシン(ISVM)に基づく新しい予測アルゴリズムを提案する。
動的多目的最適化問題(DMOP)の解決をオンライン学習プロセスとして扱う。
提案アルゴリズムは動的多目的最適化問題に効果的に取り組むことができる。
論文 参考訳(メタデータ) (2021-02-24T08:51:23Z) - Integrated Optimization of Predictive and Prescriptive Tasks [0.0]
予測タスクを記述タスクとして直接統合する新しいフレームワークを提案する。
予測アルゴリズムのパラメータを2レベル最適化技術により、処方問題内でトレーニングします。
論文 参考訳(メタデータ) (2021-01-02T02:43:10Z) - Parallelization Techniques for Verifying Neural Networks [52.917845265248744]
検証問題に基づくアルゴリズムを反復的に導入し、2つの分割戦略を探索する。
また、ニューラルネットワークの検証問題を単純化するために、ニューロンアクティベーションフェーズを利用する、高度に並列化可能な前処理アルゴリズムも導入する。
論文 参考訳(メタデータ) (2020-04-17T20:21:47Z) - Distributed Averaging Methods for Randomized Second Order Optimization [54.51566432934556]
我々はヘッセン語の形成が計算的に困難であり、通信がボトルネックとなる分散最適化問題を考察する。
我々は、ヘッセンのサンプリングとスケッチを用いたランダム化二階最適化のための非バイアスパラメータ平均化手法を開発した。
また、不均一なコンピューティングシステムのための非バイアス分散最適化フレームワークを導入するために、二階平均化手法のフレームワークを拡張した。
論文 参考訳(メタデータ) (2020-02-16T09:01:18Z) - Nonlinear Traffic Prediction as a Matrix Completion Problem with
Ensemble Learning [1.8352113484137629]
本稿では,信号化トラフィック運用管理における短期的な交通予測の問題に対処する。
高分解能(秒間)におけるセンサ状態の予測に焦点をあてる
私たちのコントリビューションは,3つの洞察を提供するものとして要約することができます。
論文 参考訳(メタデータ) (2020-01-08T13:10:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。