論文の概要: Learning Gaussian Maps for Dense Object Detection
- arxiv url: http://arxiv.org/abs/2004.11855v2
- Date: Thu, 30 Apr 2020 09:51:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-10 04:10:13.228631
- Title: Learning Gaussian Maps for Dense Object Detection
- Title(参考訳): 高密度物体検出のためのガウス写像の学習
- Authors: Sonaal Kant
- Abstract要約: 類似したオブジェクトが互いに近接して配置されるシーンにおいて,共通かつ高精度なオブジェクト検出手法を概説する。
ガウス写像のマルチタスク学習と分類と境界ボックス回帰がベースラインの精度を大幅に向上させることを示す。
提案手法は,SKU110K citesku110kデータセットの精度も向上する。
- 参考スコア(独自算出の注目度): 1.8275108630751844
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Object detection is a famous branch of research in computer vision, many
state of the art object detection algorithms have been introduced in the recent
past, but how good are those object detectors when it comes to dense object
detection? In this paper we review common and highly accurate object detection
methods on the scenes where numerous similar looking objects are placed in
close proximity with each other. We also show that, multi-task learning of
gaussian maps along with classification and bounding box regression gives us a
significant boost in accuracy over the baseline. We introduce Gaussian Layer
and Gaussian Decoder in the existing RetinaNet network for better accuracy in
dense scenes, with the same computational cost as the RetinaNet. We show the
gain of 6\% and 5\% in mAP with respect to baseline RetinaNet. Our method also
achieves the state of the art accuracy on the SKU110K \cite{sku110k} dataset.
- Abstract(参考訳): 物体検出はコンピュータビジョンにおける有名な研究分野であり、近年は最先端の物体検出アルゴリズムが数多く導入されている。
本稿では,多くの類似のオブジェクトが互いに近接して配置されるシーンにおいて,共通かつ高精度なオブジェクト検出手法を概説する。
また,ガウス写像のマルチタスク学習と分類と境界ボックス回帰によって,ベースラインよりも精度が著しく向上することを示した。
既存のRetinaNetネットワークにおいて,Gaussian LayerとGaussian Decoderを導入し,高密度シーンにおいて,RetinaNetと同じ計算コストで精度を向上する。
ベースライン・レティネットに関して、mapにおける6\%と5\%の利得を示す。
提案手法は,SKU110K \cite{sku110k} データセットの精度も向上する。
関連論文リスト
- Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - G-CAME: Gaussian-Class Activation Mapping Explainer for Object Detectors [0.0]
G-CAMEは、オブジェクト検出モデルの説明として、サリエンシマップを生成する。
提案手法をMS-COCO 2017データセット上でYOLOXを用いて評価し,G-CAMEを2段階のFaster-RCNNモデルに適用する方法について検討した。
論文 参考訳(メタデータ) (2023-06-06T04:30:18Z) - SalienDet: A Saliency-based Feature Enhancement Algorithm for Object
Detection for Autonomous Driving [160.57870373052577]
未知の物体を検出するために,サリエンデット法(SalienDet)を提案する。
我々のSaienDetは、オブジェクトの提案生成のための画像機能を強化するために、サリエンシに基づくアルゴリズムを利用している。
オープンワールド検出を実現するためのトレーニングサンプルセットにおいて、未知のオブジェクトをすべてのオブジェクトと区別するためのデータセットレザベリングアプローチを設計する。
論文 参考訳(メタデータ) (2023-05-11T16:19:44Z) - Long Range Object-Level Monocular Depth Estimation for UAVs [0.0]
本稿では,画像からモノクロ物体を長距離検出するための最先端手法の新たな拡張法を提案する。
まず、回帰タスクとして深度推定をモデル化する際、SigmoidおよびReLUライクエンコーディングを提案する。
次に,深度推定を分類問題とし,訓練損失の計算にソフトアルグマックス関数を導入する。
論文 参考訳(メタデータ) (2023-02-17T15:26:04Z) - Robust Object Detection in Remote Sensing Imagery with Noisy and Sparse
Geo-Annotations (Full Version) [4.493174773769076]
本稿では,非常にノイズの多い,不完全なアノテーションを用いたオブジェクト検出器のトレーニング手法を提案する。
本手法は,教師による学習フレームワークと,不正確で欠落したアノテーションを考慮した修正モジュールに基づく。
我々は,雑音の多い実世界のリモートセンシングデータセット上で,標準検出器を37.1%$AP_50$で改善できることを実証した。
論文 参考訳(メタデータ) (2022-10-24T07:25:31Z) - Rethinking Spatial Invariance of Convolutional Networks for Object
Counting [119.83017534355842]
局所連結ガウス核を用いて元の畳み込みフィルタを置き換え、密度写像の空間位置を推定する。
従来の研究から着想を得て,大規模なガウス畳み込みの近似を好意的に実装するために,翻訳不変性を伴う低ランク近似を提案する。
提案手法は,他の最先端手法を著しく上回り,物体の空間的位置の有望な学習を実現する。
論文 参考訳(メタデータ) (2022-06-10T17:51:25Z) - You Better Look Twice: a new perspective for designing accurate
detectors with reduced computations [56.34005280792013]
BLT-netは、新しい低計算の2段階オブジェクト検出アーキテクチャである。
非常にエレガントな第1ステージを使用して、オブジェクトをバックグラウンドから分離することで、計算を削減します。
結果のイメージ提案は、高度に正確なモデルによって第2段階で処理される。
論文 参考訳(メタデータ) (2021-07-21T12:39:51Z) - Class agnostic moving target detection by color and location prediction
of moving area [11.326363150470204]
移動目標検出はコンピュータビジョンにおいて重要な役割を果たす。
ディープラーニングベースの畳み込みニューラルネットワークのような最近のアルゴリズムは、高精度でリアルタイムのパフォーマンスを実現している。
モデル自由移動目標検出アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-24T12:34:58Z) - A Self-Training Approach for Point-Supervised Object Detection and
Counting in Crowds [54.73161039445703]
本稿では,ポイントレベルのアノテーションのみを用いて訓練された典型的なオブジェクト検出を可能にする,新たな自己学習手法を提案する。
トレーニング中、利用可能なポイントアノテーションを使用して、オブジェクトの中心点の推定を監督する。
実験の結果,本手法は検出タスクとカウントタスクの両方において,最先端のポイント管理手法よりも有意に優れていた。
論文 参考訳(メタデータ) (2020-07-25T02:14:42Z) - Rethinking Localization Map: Towards Accurate Object Perception with
Self-Enhancement Maps [78.2581910688094]
本研究は, カテゴリーラベルのみを監督として, 正確な対象位置分布マップと対象境界を抽出する, 新たな自己強調手法を提案する。
特に、提案されたセルフエンハンスメントマップは、ILSVRC上で54.88%の最先端のローカライゼーション精度を達成する。
論文 参考訳(メタデータ) (2020-06-09T12:35:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。