論文の概要: Using Quantum Metrological Bounds in Quantum Error Correction: A Simple
Proof of the Approximate Eastin-Knill Theorem
- arxiv url: http://arxiv.org/abs/2004.11893v1
- Date: Fri, 24 Apr 2020 17:58:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-22 06:04:42.412503
- Title: Using Quantum Metrological Bounds in Quantum Error Correction: A Simple
Proof of the Approximate Eastin-Knill Theorem
- Title(参考訳): 量子誤差補正における量子メトロロジー境界の利用--近似イーサン・クニールの定理の簡単な証明
- Authors: Aleksander Kubica, Rafal Demkowicz-Dobrzanski
- Abstract要約: 本稿では、量子誤り訂正符号の品質と、論理ゲートの普遍的な集合を達成する能力とを結びつける、近似したイージン・クニル定理の証明を示す。
我々の導出は、一般的な量子気象プロトコルにおける量子フィッシャー情報に強力な境界を用いる。
- 参考スコア(独自算出の注目度): 77.34726150561087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a simple proof of the approximate Eastin-Knill theorem, which
connects the quality of a quantum error-correcting code (QECC) with its ability
to achieve a universal set of transversal logical gates. Our derivation employs
powerful bounds on the quantum Fisher information in generic quantum
metrological protocols to characterize the QECC performance measured in terms
of the worst-case entanglement fidelity. The theorem is applicable to a large
class of decoherence models, including independent erasure and depolarizing
noise. Our approach is unorthodox, as instead of following the established path
of utilizing QECCs to mitigate noise in quantum metrological protocols, we
apply methods of quantum metrology to explore the limitations of QECCs.
- Abstract(参考訳): 本稿では、量子誤り訂正符号(QECC)の品質と、超越論理ゲートの普遍的な集合を実現する能力とを結びつける、近似イージン・クニル定理の簡単な証明を示す。
我々の導出は、量子フィッシャー情報の量子力学プロトコルにおける強力な境界を利用して、最悪のケースの絡み合いの忠実度で測定されたQECCの性能を特徴づける。
この定理は、独立消去や偏極ノイズを含む大規模な非コヒーレンスモデルに適用できる。
量子メトロジープロトコルにおけるノイズを軽減するためにQECCを利用するという確立された経路に従う代わりに、量子メトロジーの手法を適用してQECCの限界を探索する。
関連論文リスト
- Separable Power of Classical and Quantum Learning Protocols Through the Lens of No-Free-Lunch Theorem [70.42372213666553]
No-Free-Lunch(NFL)定理は、最適化プロセスに関係なく問題とデータ非依存の一般化誤差を定量化する。
我々は、様々な量子学習アルゴリズムを、特定の観測可能条件下で量子力学を学習するために設計された3つの学習プロトコルに分類する。
得られたNFL定理は, CLC-LP, ReQu-LP, Qu-LPにまたがるサンプルの複雑性を2次的に低減することを示した。
この性能差は、非直交量子状態のグローバル位相に関する情報を間接的に活用するために、量子関連学習プロトコルのユニークな能力に起因している。
論文 参考訳(メタデータ) (2024-05-12T09:05:13Z) - Mitigating Errors on Superconducting Quantum Processors through Fuzzy
Clustering [38.02852247910155]
新しいQuantum Error Mitigation(QEM)技術では、Fizzy C-Meansクラスタリングを使用して測定エラーパターンを特定できる。
実 NISQ 5-qubit 量子プロセッサのサブセットとして得られた 2-qubit レジスタ上で,この手法の原理的検証を報告する。
我々は、FCMベースのQEM技術により、単一および2ビットゲートベースの量子回路の期待値が合理的に改善できることを実証した。
論文 参考訳(メタデータ) (2024-02-02T14:02:45Z) - Reliable Quantum Communications based on Asymmetry in Distillation and Coding [35.693513369212646]
量子コンピューティングにおける絡み合った量子ビットの信頼性確保の問題に対処する。
テレポーテーションと蒸留に基づく間接送信を組み合わせ,(2)量子誤り訂正(QEC)に基づく直接送信
その結果、アドホックな非対称符号は、従来のQECと比較して、単一リンクと量子ネットワークのシナリオの両方において、性能向上とコードワードサイズ削減をもたらすことがわかった。
論文 参考訳(メタデータ) (2023-05-01T17:13:23Z) - A simple formulation of no-cloning and no-hiding that admits efficient
and robust verification [0.0]
不和合性は古典理論とは別の量子論の特徴である。
ノーハイディング定理(英: no-hiding theorem)は、ブラックホール情報パラドックス(英語版)の文脈で生じる別の例である。
量子論の基本的特徴のどちらも、効率的な検証が可能な単一形式で定式化する。
論文 参考訳(メタデータ) (2023-03-05T12:48:11Z) - Quantum-Error-Mitigation Circuit Groups for Noisy Quantum Metrology [0.0]
量子技術は、量子コヒーレンスや量子絡み合いのような量子系に固有の性質を利用する。
量子技術は環境との相互作用(デコヒーレンス)に対して脆弱であり、それらを高精度に活用するにはエラー軽減技術を開発する必要がある。
論文 参考訳(メタデータ) (2023-03-03T10:01:42Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
本稿では,量子状態の知識を必要とせず,量子回路の可換性を検証する回路指向対称性検証を提案する。
特に、従来の量子領域形式を回路指向安定化器に一般化するフーリエ時間安定化器(STS)手法を提案する。
論文 参考訳(メタデータ) (2021-12-27T21:15:35Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
量子コンピューティングの標準的なアプローチは、古典的にシミュレート可能なフォールトトレラントな演算セットを促進するという考え方に基づいている。
量子回路の古典的準確率シミュレーションをどのように促進するかを示す。
論文 参考訳(メタデータ) (2021-03-12T20:58:41Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
本稿では,現実的な雑音に依拠する新しい量子通信方式を提案する。
性能分析の結果,提案手法は競争力のあるQBER, 利得, 利得を提供することがわかった。
論文 参考訳(メタデータ) (2020-12-22T13:06:12Z) - Sampling Overhead Analysis of Quantum Error Mitigation: Uncoded vs.
Coded Systems [69.33243249411113]
パウリの誤差は、多数の現実的な量子チャネルの中で最も低いサンプリングオーバーヘッドをもたらすことを示す。
我々はQEMと量子チャネル符号化を併用する手法を考案し、純粋なQEMと比較してサンプリングオーバーヘッドの低減を解析する。
論文 参考訳(メタデータ) (2020-12-15T15:51:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。