論文の概要: Adversarial Machine Learning in Network Intrusion Detection Systems
- arxiv url: http://arxiv.org/abs/2004.11898v1
- Date: Thu, 23 Apr 2020 19:47:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-10 08:44:56.595315
- Title: Adversarial Machine Learning in Network Intrusion Detection Systems
- Title(参考訳): ネットワーク侵入検知システムにおけるadversarial machine learning
- Authors: Elie Alhajjar and Paul Maxwell and Nathaniel D. Bastian
- Abstract要約: ネットワーク侵入検知システムにおける逆問題の性質について検討する。
進化的計算(粒子群最適化と遺伝的アルゴリズム)と深層学習(生成的敵ネットワーク)を、敵対的サンプル生成のためのツールとして利用する。
我々の研究は、敵の摂動に直面した機械学習ベースのNIDSの脆弱性を強調している。
- 参考スコア(独自算出の注目度): 6.18778092044887
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adversarial examples are inputs to a machine learning system intentionally
crafted by an attacker to fool the model into producing an incorrect output.
These examples have achieved a great deal of success in several domains such as
image recognition, speech recognition and spam detection. In this paper, we
study the nature of the adversarial problem in Network Intrusion Detection
Systems (NIDS). We focus on the attack perspective, which includes techniques
to generate adversarial examples capable of evading a variety of machine
learning models. More specifically, we explore the use of evolutionary
computation (particle swarm optimization and genetic algorithm) and deep
learning (generative adversarial networks) as tools for adversarial example
generation. To assess the performance of these algorithms in evading a NIDS, we
apply them to two publicly available data sets, namely the NSL-KDD and
UNSW-NB15, and we contrast them to a baseline perturbation method: Monte Carlo
simulation. The results show that our adversarial example generation techniques
cause high misclassification rates in eleven different machine learning models,
along with a voting classifier. Our work highlights the vulnerability of
machine learning based NIDS in the face of adversarial perturbation.
- Abstract(参考訳): 逆の例は、攻撃者がモデルを騙して誤った出力を生成するために意図的に作った機械学習システムへの入力である。
これらの例は、画像認識、音声認識、スパム検出などいくつかの分野で大きな成功を収めています。
本稿では,ネットワーク侵入検知システム(NIDS)における逆問題の性質について検討する。
我々は、様々な機械学習モデルを回避できる敵例を生成する技術を含む、攻撃の観点に焦点を当てる。
具体的には、進化的計算(粒子群最適化と遺伝的アルゴリズム)と深層学習(生成的敵ネットワーク)を、敵対的サンプル生成のツールとして活用することを検討する。
NIDS回避におけるこれらのアルゴリズムの性能を評価するため,NSL-KDDとUNSW-NB15の2つの公開データセットに適用し,ベースライン摂動法であるモンテカルロシミュレーションと比較した。
その結果,提案手法は,11種類の機械学習モデルにおいて,投票分類器とともに高い誤分類率を引き起こすことがわかった。
我々の研究は、敵の摂動に直面した機械学習ベースのNIDSの脆弱性を強調している。
関連論文リスト
- Undermining Image and Text Classification Algorithms Using Adversarial Attacks [0.0]
本研究は,各種機械学習モデルを訓練し,GANとSMOTEを用いてテキスト分類モデルへの攻撃を目的とした追加データポイントを生成することにより,そのギャップを解消する。
実験の結果,分類モデルの重大な脆弱性が明らかとなった。特に,攻撃後の最上位のテキスト分類モデルの精度が20%低下し,顔認識精度が30%低下した。
論文 参考訳(メタデータ) (2024-11-03T18:44:28Z) - Adversarial Machine Unlearning [26.809123658470693]
本稿では,機械学習モデルに対する特定のトレーニングデータの影響を取り除くことを目的とした,機械学習の課題に焦点を当てた。
伝統的に、未学習アルゴリズムの開発は、ある種のプライバシー脅威である会員推論攻撃(MIA)と並行して実行される。
未学習アルゴリズムの設計にMIAを統合するゲーム理論フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-11T20:07:22Z) - Detect & Reject for Transferability of Black-box Adversarial Attacks
Against Network Intrusion Detection Systems [0.0]
本稿では,機械学習による侵入検知システムに対する敵ネットワークトラフィックの転送可能性について検討する。
本研究では,機械学習による侵入検知システムに対する対向的ネットワークトラフィックの転送可能性特性の影響を抑えるための防御機構として検出・削除を検討した。
論文 参考訳(メタデータ) (2021-12-22T17:54:54Z) - Tolerating Adversarial Attacks and Byzantine Faults in Distributed
Machine Learning [12.464625883462515]
敵対的攻撃は、人工知能と機械学習モデルのトレーニング、再訓練、活用を妨害しようとする。
本稿では,敵対的攻撃を防御し,ビザンチン断層を許容する分散学習アルゴリズムParSGDを提案する。
以上の結果から,ParSGDを用いたMLモデルでは,攻撃を受けていないか,ノードのほぼ半数が障害を受けたか,あるいは障害が発生していないか,というような正確な予測が可能であることがわかった。
論文 参考訳(メタデータ) (2021-09-05T07:55:02Z) - Learning to Detect: A Data-driven Approach for Network Intrusion
Detection [17.288512506016612]
ネットワークトラフィックデータセットであるNSL-KDDについて、パターンを可視化し、異なる学習モデルを用いてサイバー攻撃を検出することで包括的な研究を行う。
侵入検知に単一学習モデルアプローチを用いた従来の浅層学習モデルや深層学習モデルとは異なり、階層戦略を採用する。
バイナリ侵入検出タスクにおける教師なし表現学習モデルの利点を実証する。
論文 参考訳(メタデータ) (2021-08-18T21:19:26Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
本稿では,敵対的事例に基づくニューラルネットワークモデルを検討するためのビジュアルフレームワークを提案する。
これらの要素を観察することで、モデル内の悪用領域を素早く特定できることを示す。
論文 参考訳(メタデータ) (2021-03-18T13:04:21Z) - Adversarial Examples for Unsupervised Machine Learning Models [71.81480647638529]
回避予測を引き起こすアドリラルな例は、機械学習モデルの堅牢性を評価し改善するために広く利用されている。
教師なしモデルに対する逆例生成の枠組みを提案し,データ拡張への新たな応用を実証する。
論文 参考訳(メタデータ) (2021-03-02T17:47:58Z) - On the Transferability of Adversarial Attacksagainst Neural Text
Classifier [121.6758865857686]
テキスト分類モデルの逆例の転送可能性について検討する。
本稿では,ほとんどすべての既存モデルを騙すために,敵の例を誘導できるモデル群を見つける遺伝的アルゴリズムを提案する。
これらの逆例からモデル診断に使用できる単語置換規則を導出する。
論文 参考訳(メタデータ) (2020-11-17T10:45:05Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetectionは,ハイブリッド生産システムにおける自動モデル学習と異常検出のための新しいアプローチである。
深層学習とタイムドオートマトンを組み合わせて、観察から行動モデルを作成する。
このアルゴリズムは実システムからの2つのデータを含む少数のデータセットに適用され、有望な結果を示している。
論文 参考訳(メタデータ) (2020-10-29T08:27:43Z) - A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
and Learning [122.49765136434353]
本稿では,HMCAM (Acumulated Momentum) を用いたハミルトニアンモンテカルロ法を提案する。
また, 対数的対数的対数的学習(Contrastive Adversarial Training, CAT)と呼ばれる新たな生成法を提案し, 対数的例の平衡分布にアプローチする。
いくつかの自然画像データセットと実用システムに関する定量的および定性的な解析により、提案アルゴリズムの優位性が確認された。
論文 参考訳(メタデータ) (2020-10-15T16:07:26Z) - Vulnerability Under Adversarial Machine Learning: Bias or Variance? [77.30759061082085]
本研究では,機械学習が訓練された深層ニューラルネットワークのバイアスと分散に与える影響について検討する。
我々の分析は、ディープニューラルネットワークが対向的摂動下で性能が劣っている理由に光を当てている。
本稿では,計算処理の複雑さをよく知られた機械学習手法よりも低く抑えた,新しい逆機械学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-08-01T00:58:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。