論文の概要: StRDAN: Synthetic-to-Real Domain Adaptation Network for Vehicle
Re-Identification
- arxiv url: http://arxiv.org/abs/2004.12032v2
- Date: Fri, 17 Jul 2020 07:44:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-09 21:45:22.458543
- Title: StRDAN: Synthetic-to-Real Domain Adaptation Network for Vehicle
Re-Identification
- Title(参考訳): StRDAN: 車両再識別のための合成からリアルタイムドメイン適応ネットワーク
- Authors: Sangrok Lee, Eunsoo Park, Hongsuk Yi, Sang Hun Lee
- Abstract要約: 車両の再識別は、車両の画像から同じ車両を取得することを目的としている。
これは、市内の交通の流れを分析し予測するのには不可欠である。
本稿では,低コストで大規模な合成・実データを用いて学習し,性能を向上させる合成・実領域適応ネットワーク(StRDAN)を提案する。
- 参考スコア(独自算出の注目度): 16.14221315208939
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vehicle re-identification aims to obtain the same vehicles from vehicle
images. This is challenging but essential for analyzing and predicting traffic
flow in the city. Although deep learning methods have achieved enormous
progress for this task, their large data requirement is a critical shortcoming.
Therefore, we propose a synthetic-to-real domain adaptation network (StRDAN)
framework, which can be trained with inexpensive large-scale synthetic and real
data to improve performance. The StRDAN training method combines domain
adaptation and semi-supervised learning methods and their associated losses.
StRDAN offers significant improvement over the baseline model, which can only
be trained using real data, for VeRi and CityFlow-ReID datasets, achieving 3.1%
and 12.9% improved mean average precision, respectively.
- Abstract(参考訳): 車両再識別は、車両画像から同じ車両を取得することを目的としている。
これは困難だが、市内の交通の流れを分析し予測するのに必須である。
ディープラーニングの手法はこのタスクで大きな進歩を遂げているが、その大きなデータ要件は重大な欠点である。
そこで本研究では,より安価な大規模合成・実データを用いて学習し,性能を向上させる合成・実領域適応ネットワーク(StRDAN)を提案する。
StRDANトレーニング方法は、ドメイン適応と半教師付き学習と関連する損失を組み合わせたものである。
StRDANは、VeRiとCityFlow-ReIDデータセットに対して、実際のデータのみを使用してトレーニングできるベースラインモデルよりも大幅に改善され、平均平均精度が3.1%と12.9%向上した。
関連論文リスト
- A Scalable Approach to Covariate and Concept Drift Management via Adaptive Data Segmentation [0.562479170374811]
多くの現実世界のアプリケーションでは、継続的機械学習(ML)システムは不可欠だが、データドリフトが困難である。
伝統的なドリフト適応法は典型的にはアンサンブル技術を用いてモデルを更新し、しばしばドリフトされた歴史データを破棄する。
ドリフトしたデータをモデルトレーニングプロセスに明示的に組み込むことは、モデルの精度と堅牢性を大幅に向上させる、と我々は主張する。
論文 参考訳(メタデータ) (2024-11-23T17:35:23Z) - D5RL: Diverse Datasets for Data-Driven Deep Reinforcement Learning [99.33607114541861]
ロボット操作と移動環境の現実的なシミュレーションに焦点を当てたオフラインRLのための新しいベンチマークを提案する。
提案するベンチマークでは、状態ベースドメインと画像ベースドメインを対象とし、オフラインRLとオンライン微調整評価の両方をサポートしている。
論文 参考訳(メタデータ) (2024-08-15T22:27:00Z) - Towards a Transformer-Based Pre-trained Model for IoT Traffic Classification [0.6060461053918144]
最先端の分類法はDeep Learningに基づいている。
実際の状況では、IoTトラフィックデータが不足しているため、モデルのパフォーマンスはそれほど良くない。
大規模なラベル付きトランスフォーマーベースのIoTトラフィックデータセット上で事前トレーニングされたIoTトラフィック分類変換器(ITCT)を提案する。
実験の結果、ITCTモデルは既存のモデルよりも大幅に優れ、全体的な精度は82%に達した。
論文 参考訳(メタデータ) (2024-07-26T19:13:11Z) - Enhancing Traffic Sign Recognition with Tailored Data Augmentation: Addressing Class Imbalance and Instance Scarcity [0.0]
本稿では道路安全に不可欠な交通標識認識(TSR)における重要な課題に取り組む。
本稿では,合成画像生成や幾何変換などのデータ拡張技術を紹介する。
本手法は,実世界の条件を正確にシミュレートするための多種多様な拡張プロセスを導入し,トレーニングデータの多様性と代表性を拡大する。
論文 参考訳(メタデータ) (2024-06-05T18:45:45Z) - Reinforcement Learning with Human Feedback for Realistic Traffic
Simulation [53.85002640149283]
効果的なシミュレーションの鍵となる要素は、人間の知識と整合した現実的な交通モデルの導入である。
本研究では,現実主義に対する人間の嗜好のニュアンスを捉えることと,多様な交通シミュレーションモデルを統合することの2つの主な課題を明らかにする。
論文 参考訳(メタデータ) (2023-09-01T19:29:53Z) - One-Shot Domain Adaptive and Generalizable Semantic Segmentation with
Class-Aware Cross-Domain Transformers [96.51828911883456]
セマンティックセグメンテーションのための教師なしのsim-to-realドメイン適応(UDA)は、シミュレーションデータに基づいて訓練されたモデルの実世界のテスト性能を改善することを目的としている。
従来のUDAは、適応のためのトレーニング中に利用可能なラベルのない実世界のサンプルが豊富にあると仮定することが多い。
実世界のデータサンプルが1つしか利用できない,一発の教師なしシム・トゥ・リアル・ドメイン適応(OSUDA)と一般化問題について検討する。
論文 参考訳(メタデータ) (2022-12-14T15:54:15Z) - Self-Supervised Pre-Training for Transformer-Based Person
Re-Identification [54.55281692768765]
トランスフォーマーに基づく教師付き事前訓練は、人物再識別(ReID)において大きなパフォーマンスを達成する
ImageNetとReIDデータセットのドメインギャップのため、通常、パフォーマンスを高めるために、より大きなトレーニング済みデータセットが必要です。
この研究は、データとモデル構造の観点から、事前トレーニングデータセットとReIDデータセットのギャップを軽減することを目的としている。
論文 参考訳(メタデータ) (2021-11-23T18:59:08Z) - Attention-based Adversarial Appearance Learning of Augmented Pedestrians [49.25430012369125]
本稿では,歩行者認識タスクのための現実的なデータを合成する手法を提案する。
本手法は, 対向的損失によって駆動される注意機構を用いて, ドメインの相違を学習する。
提案手法はこのような不一致に対して頑健であり,視覚的リアリズムと意味的整合性の両方を明らかにする。
論文 参考訳(メタデータ) (2021-07-06T15:27:00Z) - Physics-Informed Deep Learning for Traffic State Estimation [3.779860024918729]
交通状態推定(TSE)は、部分的に観測されたデータを用いて道路セグメント上の交通変数(例えば密度)を再構築する。
本論文では,少量の観測データを用いて高品質なTSEを効率的に実行するための物理情報深層学習(PIDL)フレームワークについて紹介する。
論文 参考訳(メタデータ) (2021-01-17T03:28:32Z) - Deep Traffic Sign Detection and Recognition Without Target Domain Real
Images [52.079665469286496]
本稿では,ターゲットドメインからの実際の画像を必要としない新しいデータベース生成手法と,(ii)交通標識のテンプレートを提案する。
この方法は、実際のデータでトレーニングを克服することではなく、実際のデータが利用できない場合に互換性のある代替手段になることを目的としている。
大規模なデータセットでは、完全に合成されたデータセットによるトレーニングは、実際のデータセットとトレーニングのパフォーマンスにほぼ一致する。
論文 参考訳(メタデータ) (2020-07-30T21:06:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。