論文の概要: Clustering by Constructing Hyper-Planes
- arxiv url: http://arxiv.org/abs/2004.12087v1
- Date: Sat, 25 Apr 2020 08:52:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-09 21:51:23.170742
- Title: Clustering by Constructing Hyper-Planes
- Title(参考訳): ハイパープレーンの構築によるクラスタリング
- Authors: Luhong Diao (1,2), Jinying Gao1 (1,2), Manman Deng (1,2) ((1) Beijing
Institute for Scientific and Engineering Computing, Beijing University of
Technology, Beijing, China.(2) College of Applied Sciences, Beijing
University of Technology, Beijing, China.)
- Abstract要約: データポイントを識別するハイパープレーンを探索し,クラスタリングアルゴリズムを提案する。
中心とクラスターの数を決定するために点間の限界空間に依存する。
このアルゴリズムは線形構造に基づいており、データセットの分布を正確にかつ柔軟に近似することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a kind of basic machine learning method, clustering algorithms group data
points into different categories based on their similarity or distribution. We
present a clustering algorithm by finding hyper-planes to distinguish the data
points. It relies on the marginal space between the points. Then we combine
these hyper-planes to determine centers and numbers of clusters. Because the
algorithm is based on linear structures, it can approximate the distribution of
datasets accurately and flexibly. To evaluate its performance, we compared it
with some famous clustering algorithms by carrying experiments on different
kinds of benchmark datasets. It outperforms other methods clearly.
- Abstract(参考訳): クラスタリングアルゴリズムは、基本的な機械学習手法の一種として、類似性や分布に基づいて、データポイントを異なるカテゴリに分類する。
データポイントを識別するために超平面を求めるクラスタリングアルゴリズムを提案する。
それは点の間の限界空間に依存する。
そして、これらの超平面を組み合わせて、中心とクラスターの数を決定する。
このアルゴリズムは線形構造に基づいているため、データセットの分布を正確かつ柔軟に近似することができる。
その性能を評価するために、様々な種類のベンチマークデータセットで実験を行い、いくつかの有名なクラスタリングアルゴリズムと比較した。
他の方法よりも優れています。
関連論文リスト
- ABCDE: Application-Based Cluster Diff Evals [49.1574468325115]
それは実用性を目指しており、アイテムはアプリケーション固有の重要な値を持つことができ、クラスタリングがどちらが優れているかを判断するときに人間の判断を使うのは粗悪であり、アイテムの任意のスライスのためのメトリクスを報告できる。
クラスタリング品質の差分を測定するアプローチは、高価な地平を前もって構築し、それに関して各クラスタリングを評価する代わりに、ABCDEはクラスタリング間の実際の差分に基づいて、判定のための質問をサンプリングする。
論文 参考訳(メタデータ) (2024-07-31T08:29:35Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
本稿では,Reinforcement Graph Clusteringと呼ばれる新しいディープグラフクラスタリング手法を提案する。
提案手法では,クラスタ数決定と教師なし表現学習を統一的なフレームワークに統合する。
フィードバック動作を行うために、クラスタリング指向の報酬関数を提案し、同一クラスタの凝集を高め、異なるクラスタを分離する。
論文 参考訳(メタデータ) (2023-08-13T18:12:28Z) - Rethinking k-means from manifold learning perspective [122.38667613245151]
平均推定なしで直接データのクラスタを検出する新しいクラスタリングアルゴリズムを提案する。
具体的には,バタワースフィルタを用いてデータ点間の距離行列を構成する。
異なる視点に埋め込まれた相補的な情報をうまく活用するために、テンソルのSchatten p-norm正規化を利用する。
論文 参考訳(メタデータ) (2023-05-12T03:01:41Z) - A Dynamical Systems Algorithm for Clustering in Hyperspectral Imagery [0.18374319565577152]
ハイパースペクトル画像におけるクラスタリングのための新しい動的システムアルゴリズムを提案する。
このアルゴリズムの主な考え方は、密度を増加させる方向に「データポイントが押される」ことであり、同じ密度の領域に終わるピクセル群は同じクラスに属する。
本手法は, 既定素材のクラスを基礎事実として, k-means アルゴリズムと性能を比較した都市景観におけるアルゴリズムの評価を行う。
論文 参考訳(メタデータ) (2022-07-21T17:31:57Z) - Clustering Plotted Data by Image Segmentation [12.443102864446223]
クラスタリングアルゴリズムは、ラベルなしデータのパターンを検出する主要な分析手法の1つである。
本稿では,人間のクラスタリングデータに着想を得た,2次元空間におけるクラスタリングポイントの全く異なる方法を提案する。
私たちのアプローチであるVisual Clusteringは、従来のクラスタリングアルゴリズムよりもいくつかのアドバンテージを持っています。
論文 参考訳(メタデータ) (2021-10-06T06:19:30Z) - Determinantal consensus clustering [77.34726150561087]
本稿では,クラスタリングアルゴリズムのランダム再起動における決定点プロセス (DPP) の利用を提案する。
DPPは部分集合内の中心点の多様性を好んでいる。
DPPとは対照的に、この手法は多様性の確保と、すべてのデータフェースについて良好なカバレッジを得るために失敗することを示す。
論文 参考訳(メタデータ) (2021-02-07T23:48:24Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - Structured Graph Learning for Clustering and Semi-supervised
Classification [74.35376212789132]
データの局所構造とグローバル構造の両方を保存するためのグラフ学習フレームワークを提案する。
本手法は, サンプルの自己表現性を利用して, 局所構造を尊重するために, 大域的構造と適応的隣接アプローチを捉える。
我々のモデルは、ある条件下でのカーネルk平均法とk平均法の組合せと等価である。
論文 参考訳(メタデータ) (2020-08-31T08:41:20Z) - Clustering with Tangles: Algorithmic Framework and Theoretical
Guarantees [10.992467680364962]
本稿では,機械学習応用におけるトライアングルの実用可能性を示す。
任意のデータセットのカットの集合が与えられたとき、トライアングルはこれらのカットを密集構造の方向を指し示すために集約する。
タングルを用いたクラスタリングのためのアルゴリズムフレームワークを構築し、様々な設定で理論的保証を証明し、広範囲なシミュレーションとユースケースを提供する。
論文 参考訳(メタデータ) (2020-06-25T14:23:56Z) - Point-Set Kernel Clustering [11.093960688450602]
本稿では,オブジェクトとオブジェクトの集合との類似性を計算する,ポイントセットカーネルと呼ばれる新しい類似度尺度を提案する。
新たなクラスタリング手法は,大規模データセットを扱えるように,効率的かつ効率的であることを示す。
論文 参考訳(メタデータ) (2020-02-14T00:00:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。