論文の概要: Neural Network-Based Collaborative Filtering for Question Sequencing
- arxiv url: http://arxiv.org/abs/2004.12212v1
- Date: Sat, 25 Apr 2020 19:15:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-09 21:25:12.450183
- Title: Neural Network-Based Collaborative Filtering for Question Sequencing
- Title(参考訳): 質問シーケンシングのためのニューラルネットワークに基づく協調フィルタリング
- Authors: Lior Sidi and Hadar Klein
- Abstract要約: 我々はニューラルコラボレーティブ・フィルタリング(NCF)モデルを用いて質問シークエンシングを生成する。
ペアワイズメモリベースの質問シークエンシングアルゴリズムであるEduRankと比較する。
NCFモデルでは,平均相関スコア0.85のEduRankモデルよりも格付けが有意に向上した。
- 参考スコア(独自算出の注目度): 0.3655021726150368
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: E-Learning systems (ELS) and Intelligent Tutoring Systems (ITS) play a
significant part in today's education programs. Sequencing questions is the art
of generating a personalized quiz for a target learner. A personalized test
will enrich the learner's experience and will contribute to a more effective
and efficient learning process. In this paper, we used the Neural Collaborative
Filtering (NCF) model to generate question sequencing and compare it to a
pair-wise memory-based question sequencing algorithm - EduRank. The NCF model
showed significantly better ranking results than the EduRank model with an
Average precision correlation score of 0.85 compared to 0.8.
- Abstract(参考訳): E-Learning System (ELS) と Intelligent Tutoring Systems (ITS) は、今日の教育プログラムにおいて重要な役割を果たしている。
質問のシーケンスは、ターゲット学習者にパーソナライズされたクイズを生成する技術である。
パーソナライズされたテストは、学習者の経験を豊かにし、より効果的で効率的な学習プロセスに貢献する。
本稿では,ニューラル・コラボレーティブ・フィルタリング(ncf)モデルを用いて質問シークエンシングを生成し,ペアワイズメモリに基づく質問シークエンシングアルゴリズム(edurank)と比較した。
NCFモデルでは,平均相関スコア0.85のEduRankモデルよりも0.8。
関連論文リスト
- EffiSegNet: Gastrointestinal Polyp Segmentation through a Pre-Trained EfficientNet-based Network with a Simplified Decoder [0.8892527836401773]
EffiSegNetは、トレーニング済みの畳み込みニューラルネットワーク(CNN)をバックボーンとして、トランスファーラーニングを活用する新しいセグメンテーションフレームワークである。
Kvasir-SEGデータセットを用いて消化管ポリープセグメンテーションタスクの評価を行い,その成果を得た。
論文 参考訳(メタデータ) (2024-07-23T08:54:55Z) - Provably Neural Active Learning Succeeds via Prioritizing Perplexing Samples [53.95282502030541]
ニューラルネットワークベースのアクティブラーニング(NAL)は、ニューラルネットワークを使用してサンプルの小さなサブセットを選択してトレーニングする、費用対効果の高いデータ選択技術である。
我々は、機能学習の観点から、両方のクエリ基準ベースのNALの成功について、統一的な説明を提供することにより、一歩前進させようとする。
論文 参考訳(メタデータ) (2024-06-06T10:38:01Z) - A Lightweight Measure of Classification Difficulty from Application Dataset Characteristics [4.220363193932374]
効率的なコサイン類似度に基づく分類困難度尺度Sを提案する。
データセットのクラス数とクラス内およびクラス間の類似度メトリクスから計算される。
この手法を実践者が、繰り返しトレーニングやテストによって、6倍から29倍の速度で効率の良いモデルを選択するのにどのように役立つかを示す。
論文 参考訳(メタデータ) (2024-04-09T03:27:09Z) - Explainable Contrastive and Cost-Sensitive Learning for Cervical Cancer
Classification [0.0]
最初に、トレーニング済みの5つのCNNを微調整し、誤分類の全体的なコストを最小化する。
教師付きコントラスト学習は、モデルが重要な特徴やパターンを捉えやすくするために含まれます。
実験の結果, 精度97.29%を達成し, 開発システムの有効性を実証した。
論文 参考訳(メタデータ) (2024-02-24T21:03:30Z) - FaFCNN: A General Disease Classification Framework Based on Feature
Fusion Neural Networks [4.097623533226476]
本稿では,機能認識型統合相関ニューラルネットワーク (FaFCNN) を提案する。
実験結果から,事前学習による強化特徴を用いた訓練により,無作為森林法よりも高い性能向上が得られた。
論文 参考訳(メタデータ) (2023-07-24T04:23:08Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
本研究では,2層非線形畳み込みニューラルネットワークの学習過程について検討した。
分析の結果,不均衡なデータ群と学習容易なスプリアス特徴が学習過程におけるスプリアス特徴の優位性に繋がる可能性が示唆された。
本稿では,PDEと呼ばれる新たなトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-08T05:44:06Z) - Deep Negative Correlation Classification [82.45045814842595]
既存のディープアンサンブル手法は、多くの異なるモデルをナビゲートし、予測を集約する。
深部負相関分類(DNCC)を提案する。
DNCCは、個々の推定器が正確かつ負の相関を持つ深い分類アンサンブルを生成する。
論文 参考訳(メタデータ) (2022-12-14T07:35:20Z) - GNNRank: Learning Global Rankings from Pairwise Comparisons via Directed
Graph Neural Networks [68.61934077627085]
本稿では,グラフ埋め込みを学習可能なGNNと互換性のあるモデリングフレームワークであるGNNRankを紹介する。
既存の手法と比較して,我々の手法が競争力があり,しばしば優れた性能を発揮することを示す。
論文 参考訳(メタデータ) (2022-02-01T04:19:50Z) - On the Evaluation of Sequential Machine Learning for Network Intrusion
Detection [3.093890460224435]
本稿では,悪質な活動パターンを示すNetFlowの時間的シーケンスを抽出するための詳細な手法を提案する。
次に,この手法を適用し,従来の静的学習モデルと逐次学習モデルの有効性を比較した。
論文 参考訳(メタデータ) (2021-06-15T08:29:28Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
実世界のフェデレーションシステムにおける分類モデルのトレーニングにおける中心的な課題は、非IIDデータによる学習である。
このアルゴリズムは, 近似されたssian混合モデルからサンプリングした仮想表現を用いて分類器を調整する。
実験の結果,CIFAR-10,CIFAR-100,CINIC-10など,一般的なフェデレーション学習ベンチマークにおけるCCVRの現状が示された。
論文 参考訳(メタデータ) (2021-06-09T12:02:29Z) - BCFNet: A Balanced Collaborative Filtering Network with Attention
Mechanism [106.43103176833371]
協調フィルタリング(CF)ベースの推奨方法が広く研究されている。
BCFNet(Balanced Collaborative Filtering Network)という新しい推薦モデルを提案する。
さらに注意機構は、暗黙のフィードバックの中で隠れた情報をよりよく捉え、ニューラルネットワークの学習能力を強化するように設計されている。
論文 参考訳(メタデータ) (2021-03-10T14:59:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。