論文の概要: KrakN: Transfer Learning framework for thin crack detection in
infrastructure maintenance
- arxiv url: http://arxiv.org/abs/2004.12337v2
- Date: Sun, 11 Oct 2020 17:15:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-09 12:50:27.136416
- Title: KrakN: Transfer Learning framework for thin crack detection in
infrastructure maintenance
- Title(参考訳): KrakN: インフラメンテナンスにおけるひび割れ検出のための伝達学習フレームワーク
- Authors: Mateusz \.Zarski, Bartosz W\'ojcik, Jaros{\l}aw Adam Miszczak
- Abstract要約: 現在適用されている手法は時代遅れで、労働集約的で不正確である。
我々は、これらの制限要因を克服するために、カスタムメイドフレームワーク -- KrakN を活用することを提案する。
これにより、デジタル画像上のユニークなインフラストラクチャ欠陥検出装置の開発が可能になり、90%以上の精度を達成することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Monitoring the technical condition of infrastructure is a crucial element to
its maintenance. Currently applied methods are outdated, labour-intensive and
inaccurate. At the same time, the latest methods using Artificial Intelligence
techniques are severely limited in their application due to two main factors --
labour-intensive gathering of new datasets and high demand for computing power.
We propose to utilize custom made framework -- KrakN, to overcome these
limiting factors. It enables the development of unique infrastructure defects
detectors on digital images, achieving the accuracy of above 90%. The framework
supports semi-automatic creation of new datasets and has modest computing power
requirements. It is implemented in the form of a ready-to-use software package
openly distributed to the public. Thus, it can be used to immediately implement
the methods proposed in this paper in the process of infrastructure management
by government units, regardless of their financial capabilities.
- Abstract(参考訳): インフラストラクチャの技術的状態を監視することは、そのメンテナンスにとって重要な要素です。
現在、適用方法は時代遅れ、労働集約的、不正確である。
同時に、人工知能技術を用いた最新の手法は、新しいデータセットの集約的な収集と計算能力の高要求という2つの主な要因により、その応用において著しく制限されている。
我々は、これらの制限要因を克服するために、カスタムメイドフレームワーク -- KrakN を活用することを提案する。
これはデジタル画像上のユニークなインフラストラクチャ欠陥検出装置の開発を可能にし、90%以上の精度を達成する。
このフレームワークは、新しいデータセットの半自動生成をサポートし、控えめなコンピューティングパワー要求がある。
使用可能なソフトウェアパッケージとして公開配布された形で実装されている。
そこで,本論文では,金融能力によらず,政府単位によるインフラ管理の過程で提案する手法を直ちに実装することができる。
関連論文リスト
- An Infrastructure Cost Optimised Algorithm for Partitioning of Microservices [20.638612359627952]
アプリケーションをクラウドに移行することは、ソフトウェア業界で広く採用されているため、分散クラウドにデプロイするアプリケーションにとって、最も適しており、広く受け入れられているアーキテクチャパターンであることが証明されている。
信頼性や障害分離,スケーラビリティ,アセットメンテナンスの容易さやオーナシップ境界の明確化など,技術的メリットの両面から,その有効性を実現しています。
場合によっては、既存のアプリケーションをアーキテクチャに移行するという複雑さは、圧倒的に複雑でコストがかかります。
論文 参考訳(メタデータ) (2024-08-13T02:08:59Z) - A Microservices Identification Method Based on Spectral Clustering for
Industrial Legacy Systems [5.255685751491305]
本稿では,スペクトルグラフ理論に基づくマイクロサービス候補抽出のための自動分解手法を提案する。
提案手法は,ドメインの専門家が関与しなくても,良好な結果が得られることを示す。
論文 参考訳(メタデータ) (2023-12-20T07:47:01Z) - State-of-the-art review and synthesis: A requirement-based roadmap for standardized predictive maintenance automation using digital twin technologies [3.0996501197166975]
最近のデジタル技術は予測保守(PMx)を普及させた
しかし、PMxは、説明可能性の低さ、データ駆動手法のサンプル非効率性、物理学に基づく手法の複雑さ、知識に基づく手法の限定的な一般化可能性や拡張性など、多くの制限に直面し続けている。
本稿では,これらの課題に対処するためにDigital Twins(DT)を活用し,大規模なPMxの自動化を実現することを提案する。
論文 参考訳(メタデータ) (2023-11-13T00:16:25Z) - Temporal Patience: Efficient Adaptive Deep Learning for Embedded Radar
Data Processing [4.359030177348051]
本稿では,ストリーミングレーダデータに存在する時間相関を利用して,組込みデバイス上でのディープラーニング推論のための早期排他ニューラルネットワークの効率を向上させる手法を提案する。
以上の結果から,提案手法は単一排他ネットワーク上での推論当たりの演算量の最大26%を削減し,信頼度に基づく早期排他バージョンで12%を削減できることがわかった。
このような効率向上により、リソース制約のあるプラットフォーム上でリアルタイムなレーダデータ処理が可能になり、スマートホーム、インターネット・オブ・シング、人間とコンピュータのインタラクションといったコンテキストにおける新しいアプリケーションが可能になる。
論文 参考訳(メタデータ) (2023-09-11T12:38:01Z) - Computation-efficient Deep Learning for Computer Vision: A Survey [121.84121397440337]
ディープラーニングモデルは、さまざまな視覚的知覚タスクにおいて、人間レベルのパフォーマンスに到達または超えた。
ディープラーニングモデルは通常、重要な計算資源を必要とし、現実のシナリオでは非現実的な電力消費、遅延、または二酸化炭素排出量につながる。
新しい研究の焦点は計算効率のよいディープラーニングであり、推論時の計算コストを最小限に抑えつつ、良好な性能を達成することを目指している。
論文 参考訳(メタデータ) (2023-08-27T03:55:28Z) - Scalable Vehicle Re-Identification via Self-Supervision [66.2562538902156]
自動車再同定は、都市規模の車両分析システムにおいて重要な要素の1つである。
車両再設計のための最先端のソリューションの多くは、既存のre-idベンチマークの精度向上に重点を置いており、計算の複雑さを無視することが多い。
推論時間に1つのネットワークのみを使用する自己教師型学習によって、シンプルで効果的なハイブリッドソリューションを提案する。
論文 参考訳(メタデータ) (2022-05-16T12:14:42Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
本稿では,基本的なクロスプラットフォームテンソルフレームワークとスクリプト言語エンジンを使用しながら,すべての要件をサポートする統合デプロイメントパイプラインとフリー・ツー・オペレートアプローチを提案する。
しかし、このアプローチは、実際のプロダクショングレードシステムに機械学習機能を実際にデプロイするために必要な手順やパイプラインを提供していない。
論文 参考訳(メタデータ) (2021-12-22T14:45:37Z) - CoreDiag: Eliminating Redundancy in Constraint Sets [68.8204255655161]
最小コア(最小非冗長制約集合)の決定に利用できる新しいアルゴリズムを提案する。
このアルゴリズムは、冗長性の度合いが高い分散知識工学シナリオにおいて特に有用である。
本手法の適用可能性を示すために, 商業的構成知識ベースを用いた実証的研究を実施した。
論文 参考訳(メタデータ) (2021-02-24T09:16:10Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
本稿では,異種分散環境に適用可能なaiopsプラットフォームのシステム設計について述べる。
高頻度でメトリクスを収集し、エッジデバイス上で特定の異常検出アルゴリズムを直接実行することが可能である。
論文 参考訳(メタデータ) (2021-02-12T09:33:00Z) - AI-based Resource Allocation: Reinforcement Learning for Adaptive
Auto-scaling in Serverless Environments [0.0]
近年、サーバーレスコンピューティングはクラウドコンピューティングモデルの魅力的な新しいパラダイムとして現れています。
商用およびオープンソースのサーバレスコンピューティングプラットフォームに共通するアプローチは、ワークロードベースの自動スケーリングである。
本稿では、サーバーレスフレームワークにおける要求ベース自動スケーリングに対する強化学習アプローチの適用性について検討する。
論文 参考訳(メタデータ) (2020-05-29T06:18:39Z) - A Privacy-Preserving Distributed Architecture for
Deep-Learning-as-a-Service [68.84245063902908]
本稿では,ディープラーニング・アズ・ア・サービスのための分散アーキテクチャを提案する。
クラウドベースのマシンとディープラーニングサービスを提供しながら、ユーザの機密データを保存できる。
論文 参考訳(メタデータ) (2020-03-30T15:12:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。