論文の概要: Temporal Patience: Efficient Adaptive Deep Learning for Embedded Radar
Data Processing
- arxiv url: http://arxiv.org/abs/2309.05686v1
- Date: Mon, 11 Sep 2023 12:38:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-13 15:38:19.823854
- Title: Temporal Patience: Efficient Adaptive Deep Learning for Embedded Radar
Data Processing
- Title(参考訳): 時間的忍耐:組み込みレーダデータ処理のための効率的な適応型ディープラーニング
- Authors: Max Sponner and Julius Ott and Lorenzo Servadei and Bernd Waschneck
and Robert Wille and Akash Kumar
- Abstract要約: 本稿では,ストリーミングレーダデータに存在する時間相関を利用して,組込みデバイス上でのディープラーニング推論のための早期排他ニューラルネットワークの効率を向上させる手法を提案する。
以上の結果から,提案手法は単一排他ネットワーク上での推論当たりの演算量の最大26%を削減し,信頼度に基づく早期排他バージョンで12%を削減できることがわかった。
このような効率向上により、リソース制約のあるプラットフォーム上でリアルタイムなレーダデータ処理が可能になり、スマートホーム、インターネット・オブ・シング、人間とコンピュータのインタラクションといったコンテキストにおける新しいアプリケーションが可能になる。
- 参考スコア(独自算出の注目度): 4.359030177348051
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Radar sensors offer power-efficient solutions for always-on smart devices,
but processing the data streams on resource-constrained embedded platforms
remains challenging. This paper presents novel techniques that leverage the
temporal correlation present in streaming radar data to enhance the efficiency
of Early Exit Neural Networks for Deep Learning inference on embedded devices.
These networks add additional classifier branches between the architecture's
hidden layers that allow for an early termination of the inference if their
result is deemed sufficient enough by an at-runtime decision mechanism. Our
methods enable more informed decisions on when to terminate the inference,
reducing computational costs while maintaining a minimal loss of accuracy.
Our results demonstrate that our techniques save up to 26% of operations per
inference over a Single Exit Network and 12% over a confidence-based Early Exit
version. Our proposed techniques work on commodity hardware and can be combined
with traditional optimizations, making them accessible for resource-constrained
embedded platforms commonly used in smart devices. Such efficiency gains enable
real-time radar data processing on resource-constrained platforms, allowing for
new applications in the context of smart homes, Internet-of-Things, and
human-computer interaction.
- Abstract(参考訳): radarセンサーは常時オンのスマートデバイスに電力効率の良いソリューションを提供するが、リソースに制約のある組み込みプラットフォームでデータストリームを処理することは依然として難しい。
本稿では,ストリーミングレーダデータに存在する時間相関を利用して,組み込みデバイス上でのディープラーニング推論のための早期排他ニューラルネットワークの効率を向上させる手法を提案する。
これらのネットワークは、アーキテクチャの隠れたレイヤにさらなる分類子ブランチを追加し、その結果が実行時の決定機構によって十分と見なされる場合、推論の早期終了を可能にする。
提案手法では,推論をいつ終了するかを判断し,精度の低下を最小限に抑えながら計算コストを削減できる。
提案手法は,1つのエグジットネットワーク上で最大26%,信頼度に基づく早期エグジットバージョンで12%の運用を節約できることを実証した。
提案手法はコモディティなハードウェア上で動作し,従来の最適化と組み合わせることで,スマートデバイスで一般的に使用されるリソース制約のある組込みプラットフォームで利用できるようにする。
このような効率の向上により、リソース制約のあるプラットフォームでのリアルタイムレーダーデータ処理が可能になり、スマートホーム、インターネット・オブ・シング、人間とコンピュータのインタラクションといったコンテキストで新しいアプリケーションが可能になる。
関連論文リスト
- Efficient Multi-Object Tracking on Edge Devices via Reconstruction-Based Channel Pruning [0.2302001830524133]
現代のMOTシステムで使用されるような複雑なネットワークの圧縮に適したニューラルネットワークプルーニング手法を提案する。
我々は、高い精度を維持しつつ、最大70%のモデルサイズ削減を実現し、さらにJetson Orin Nanoの性能を向上させる。
論文 参考訳(メタデータ) (2024-10-11T12:37:42Z) - Edge-device Collaborative Computing for Multi-view Classification [9.047284788663776]
エッジノードとエンドデバイスが相関データと推論計算負荷を共有するエッジでの協調推論について検討する。
本稿では,データ冗長性を効果的に低減し,帯域幅の消費を削減できる選択手法を提案する。
実験結果から、選択的な協調スキームは上記の性能指標間で異なるトレードオフを達成できることが示された。
論文 参考訳(メタデータ) (2024-09-24T11:07:33Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
エッジ対応産業用IoTネットワークにおける計算知能とディープラーニング(DL)の展開方法について検討する。
本稿では,新しいマルチエグジットベースフェデレーションエッジ学習(ME-FEEL)フレームワークを提案する。
特に、提案されたME-FEELは、非常に限られたリソースを持つ産業用IoTネットワークにおいて、最大32.7%の精度を達成することができる。
論文 参考訳(メタデータ) (2021-10-28T08:14:57Z) - Multi-Exit Semantic Segmentation Networks [78.44441236864057]
本稿では,最先端セグメンテーションモデルをMESSネットワークに変換するフレームワークを提案する。
パラメトリド早期出口を用いた特別訓練されたCNNは、より簡単なサンプルの推測時に、その深さに沿って保存する。
接続されたセグメンテーションヘッドの数、配置、アーキテクチャとエグジットポリシーを併用して、デバイス機能とアプリケーション固有の要件に適応する。
論文 参考訳(メタデータ) (2021-06-07T11:37:03Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
本稿では,異種分散環境に適用可能なaiopsプラットフォームのシステム設計について述べる。
高頻度でメトリクスを収集し、エッジデバイス上で特定の異常検出アルゴリズムを直接実行することが可能である。
論文 参考訳(メタデータ) (2021-02-12T09:33:00Z) - Cost-effective Machine Learning Inference Offload for Edge Computing [0.3149883354098941]
本稿では,インストール・ベース・オンプレミス(edge)計算資源を活用した新しいオフロード機構を提案する。
提案するメカニズムにより、エッジデバイスは、リモートクラウドを使用する代わりに、重い計算集約的なワークロードをエッジノードにオフロードすることができる。
論文 参考訳(メタデータ) (2020-12-07T21:11:02Z) - Multi-scale Interaction for Real-time LiDAR Data Segmentation on an
Embedded Platform [62.91011959772665]
LiDARデータのリアルタイムセマンティックセグメンテーションは、自動運転車にとって不可欠である。
ポイントクラウド上で直接動作する現在のアプローチでは、複雑な空間集約操作を使用する。
本稿では,マルチスケールインタラクションネットワーク(MINet)と呼ばれるプロジェクションベースの手法を提案する。
論文 参考訳(メタデータ) (2020-08-20T19:06:11Z) - Differentially Private Federated Learning for Resource-Constrained
Internet of Things [24.58409432248375]
フェデレーション学習は、中央にデータをアップロードすることなく、分散されたスマートデバイスから大量のデータを分析できる。
本稿では、IoTのリソース制約されたスマートデバイスにまたがるデータから機械学習モデルを効率的にトレーニングするためのDP-PASGDと呼ばれる新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-28T04:32:54Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z) - Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and
On-Device Inference [49.88536971774444]
慣性測定ユニット(IMU)は小型で安価でエネルギー効率が良く、スマートデバイスや移動ロボットに広く使われている。
正確で信頼性の高い歩行者ナビゲーションをサポートするために慣性データをエクスプロイトすることは、新しいインターネット・オブ・シングス・アプリケーションやサービスにとって重要なコンポーネントである。
我々は、深層学習に基づく慣性ナビゲーション研究のための最初の公開データセットであるOxIOD(OxIOD)を提示、リリースする。
論文 参考訳(メタデータ) (2020-01-13T04:41:54Z) - Resource-Efficient Neural Networks for Embedded Systems [23.532396005466627]
本稿では,機械学習技術の現状について概説する。
私たちは、過去10年で主要な機械学習モデルであるディープニューラルネットワーク(DNN)に基づく、リソース効率の高い推論に焦点を当てています。
我々は、圧縮技術を用いて、よく知られたベンチマークデータセットの実験で議論を裏付ける。
論文 参考訳(メタデータ) (2020-01-07T14:17:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。