論文の概要: Heterogeneous Graph Neural Networks for Extractive Document
Summarization
- arxiv url: http://arxiv.org/abs/2004.12393v1
- Date: Sun, 26 Apr 2020 14:38:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-09 13:27:39.087515
- Title: Heterogeneous Graph Neural Networks for Extractive Document
Summarization
- Title(参考訳): 抽出文書要約のためのヘテロジニアスグラフニューラルネットワーク
- Authors: Danqing Wang, Pengfei Liu, Yining Zheng, Xipeng Qiu, Xuanjing Huang
- Abstract要約: クロス文関係は、抽出文書要約における重要なステップである。
We present a graph-based neural network for extractive summarization (HeterSumGraph)
抽出文書要約のためのグラフベースニューラルネットワークに異なる種類のノードを導入する。
- 参考スコア(独自算出の注目度): 101.17980994606836
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a crucial step in extractive document summarization, learning
cross-sentence relations has been explored by a plethora of approaches. An
intuitive way is to put them in the graph-based neural network, which has a
more complex structure for capturing inter-sentence relationships. In this
paper, we present a heterogeneous graph-based neural network for extractive
summarization (HeterSumGraph), which contains semantic nodes of different
granularity levels apart from sentences. These additional nodes act as the
intermediary between sentences and enrich the cross-sentence relations.
Besides, our graph structure is flexible in natural extension from a
single-document setting to multi-document via introducing document nodes. To
our knowledge, we are the first one to introduce different types of nodes into
graph-based neural networks for extractive document summarization and perform a
comprehensive qualitative analysis to investigate their benefits. The code will
be released on Github
- Abstract(参考訳): 文書要約の抽出において重要なステップとして、相互関係の学習は多数のアプローチによって研究されてきた。
直感的な方法は、グラフベースのニューラルネットワークにそれらを配置することだ。
本稿では,文の粒度の異なる意味ノードを含むヘタサムグラフ(HeterSumGraph)を抽出するための異種グラフベースニューラルネットワークを提案する。
これらの追加ノードは文間の仲介として機能し、文間関係を強化する。
また,文書ノードの導入による単一ドキュメント設定からマルチドキュメントへの自然な拡張も可能である。
我々の知る限り、我々はグラフベースのニューラルネットワークに異なる種類のノードを導入し、文書の要約を抽出し、それらの利点を調べるための包括的な質的分析を行う。
コードはgithubでリリースされる予定だ。
関連論文リスト
- GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
グラフニューラルネットワークは、グラフベースの機械学習の選択フレームワークになりつつある。
本稿では,古典的メッセージパッシングに代えて,ノード特徴の局所分布を解析するグラフニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-01-17T13:04:23Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - Rethinking Explaining Graph Neural Networks via Non-parametric Subgraph
Matching [68.35685422301613]
そこで我々はMatchExplainerと呼ばれる新しい非パラメトリックな部分グラフマッチングフレームワークを提案し、説明的部分グラフを探索する。
ターゲットグラフと他のインスタンスを結合し、ノードに対応する距離を最小化することで最も重要な結合部分構造を識別する。
合成および実世界のデータセットの実験は、最先端のパラメトリックベースラインをかなりのマージンで上回り、MatchExplainerの有効性を示す。
論文 参考訳(メタデータ) (2023-01-07T05:14:45Z) - Sparse Structure Learning via Graph Neural Networks for Inductive
Document Classification [2.064612766965483]
帰納的文書分類のための新しいGNNに基づくスパース構造学習モデルを提案する。
本モデルでは,文間の不連続な単語を接続する訓練可能なエッジの集合を収集し,動的文脈依存性を持つエッジを疎結合に選択するために構造学習を用いる。
いくつかの実世界のデータセットの実験では、提案されたモデルがほとんどの最先端の結果より優れていることが示されている。
論文 参考訳(メタデータ) (2021-12-13T02:36:04Z) - SHGNN: Structure-Aware Heterogeneous Graph Neural Network [77.78459918119536]
本稿では、上記の制約に対処する構造対応不均一グラフニューラルネットワーク(SHGNN)を提案する。
まず,メタパス内の中間ノードの局所構造情報を取得するために,特徴伝搬モジュールを利用する。
次に、ツリーアテンションアグリゲータを使用して、グラフ構造情報をメタパス上のアグリゲーションモジュールに組み込む。
最後に、メタパスアグリゲータを利用して、異なるメタパスから集約された情報を融合する。
論文 参考訳(メタデータ) (2021-12-12T14:18:18Z) - Augmented Abstractive Summarization With Document-LevelSemantic Graph [3.0272794341021667]
従来の抽象的手法では、配列からシーケンスへの構造を適用して、モジュールなしで要約を生成する。
セマンティックグラフを用いて生成性能を向上する。
このようなエンティティグラフの情報を活用するために、新しいニューラルデコーダが提示される。
論文 参考訳(メタデータ) (2021-09-13T15:12:34Z) - Multiplex Graph Neural Network for Extractive Text Summarization [34.185093491514394]
抽出テキスト要約は、ある文書から最も代表的な文章を要約として抽出することを目的としている。
文と単語の異なる関係を共同でモデル化する新しい多重グラフ畳み込みネットワーク(Multi-GCN)を提案する。
マルチGCNに基づいて,抽出テキスト要約のための多重グラフ要約(Multi-GraS)モデルを提案する。
論文 参考訳(メタデータ) (2021-08-29T16:11:01Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
グラフ畳み込みネットワークにおける既存の表現学習手法は主に、各ノードの近傍を知覚全体として記述することで設計される。
本稿では,グラフの潜在意味パスを学習することで暗黙的な意味を探索する意味グラフ畳み込みネットワーク(sgcn)を提案する。
論文 参考訳(メタデータ) (2021-01-16T16:18:43Z) - Neural Topic Modeling by Incorporating Document Relationship Graph [18.692100955163713]
グラフトピックモデル(GTM)は、コーパスを文書関係グラフとして表現したGNNベースのニューラルトピックモデルである。
コーパス内の文書と単語はグラフ内のノードとなり、文書と単語の共起に基づいて接続される。
論文 参考訳(メタデータ) (2020-09-29T12:45:55Z) - Tensor Graph Convolutional Networks for Text Classification [17.21683037822181]
グラフベースのニューラルネットワークは、グローバル情報をキャプチャする機能など、いくつかの優れた特性を示している。
本稿では,テキスト分類問題に対するグラフベースニューラルネットワークについて検討する。
論文 参考訳(メタデータ) (2020-01-12T14:28:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。