論文の概要: Neural Topic Modeling by Incorporating Document Relationship Graph
- arxiv url: http://arxiv.org/abs/2009.13972v1
- Date: Tue, 29 Sep 2020 12:45:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-13 06:20:41.824331
- Title: Neural Topic Modeling by Incorporating Document Relationship Graph
- Title(参考訳): 文書関係グラフを組み込んだニューラルトピックモデリング
- Authors: Deyu Zhou, Xuemeng Hu, Rui Wang
- Abstract要約: グラフトピックモデル(GTM)は、コーパスを文書関係グラフとして表現したGNNベースのニューラルトピックモデルである。
コーパス内の文書と単語はグラフ内のノードとなり、文書と単語の共起に基づいて接続される。
- 参考スコア(独自算出の注目度): 18.692100955163713
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) that capture the relationships between graph
nodes via message passing have been a hot research direction in the natural
language processing community. In this paper, we propose Graph Topic Model
(GTM), a GNN based neural topic model that represents a corpus as a document
relationship graph. Documents and words in the corpus become nodes in the graph
and are connected based on document-word co-occurrences. By introducing the
graph structure, the relationships between documents are established through
their shared words and thus the topical representation of a document is
enriched by aggregating information from its neighboring nodes using graph
convolution. Extensive experiments on three datasets were conducted and the
results demonstrate the effectiveness of the proposed approach.
- Abstract(参考訳): グラフノード間の関係をメッセージパッシングによってキャプチャするグラフニューラルネットワーク(GNN)は、自然言語処理コミュニティにおいてホットな研究方向となっている。
本稿では、コーパスを文書関係グラフとして表現したGNNベースのニューラルトピックモデルであるグラフトピックモデル(GTM)を提案する。
コーパス内の文書と単語はグラフのノードとなり、文書語共起に基づいて接続される。
グラフ構造を導入することにより、文書間の関係が共有語を通じて確立され、グラフ畳み込みを用いて隣接するノードから情報を集約することにより、文書の話題表現が充実する。
3つのデータセットに関する広範な実験を行い,提案手法の有効性を実証した。
関連論文リスト
- Graph Neural Networks on Discriminative Graphs of Words [19.817473565906777]
本研究では,単語グラフニューラルネットワーク(DGoW-GNN)によるテキストの識別手法を提案する。
本稿では,GNNとシーケンスモデルを組み合わせたグラフベースのテキスト分類の新しいモデルを提案する。
提案手法を7つのベンチマークデータセットで評価し,いくつかの最先端ベースラインモデルにより性能が向上していることを確認した。
論文 参考訳(メタデータ) (2024-10-27T15:14:06Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - Word Grounded Graph Convolutional Network [24.6338889954789]
グラフ畳み込みネットワーク(GCN)は、テキスト分類などの様々なタスクにおけるテキスト表現の学習において、高いパフォーマンスを示している。
本稿では,文書非依存グラフを用いて,文書グラフをワードグラフに変換し,データサンプルとGCNモデルを分離することを提案する。
提案したWord-level Graph(WGraph)は、コーパスで一般的に使われている単語共起による単語表現を暗黙的に学習するだけでなく、さらにグローバルなセマンティック依存も含んでいる。
論文 参考訳(メタデータ) (2023-05-10T19:56:55Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
グラフニューラルネットワーク(GNN)は、ノード機能を伝搬し、インタラクションを構築するためにメッセージパッシングパラダイムに依存している。
最近の研究は、異なるグラフ学習タスクはノード間の異なる範囲の相互作用を必要とすることを指摘している。
科学領域における2つの共通グラフ構築法、すなわち、emphK-nearest neighbor(KNN)グラフとemphfully-connected(FC)グラフについて検討する。
論文 参考訳(メタデータ) (2022-05-15T11:38:14Z) - Sparse Structure Learning via Graph Neural Networks for Inductive
Document Classification [2.064612766965483]
帰納的文書分類のための新しいGNNに基づくスパース構造学習モデルを提案する。
本モデルでは,文間の不連続な単語を接続する訓練可能なエッジの集合を収集し,動的文脈依存性を持つエッジを疎結合に選択するために構造学習を用いる。
いくつかの実世界のデータセットの実験では、提案されたモデルがほとんどの最先端の結果より優れていることが示されている。
論文 参考訳(メタデータ) (2021-12-13T02:36:04Z) - A Neural Edge-Editing Approach for Document-Level Relation Graph
Extraction [9.449257113935461]
文書内の関係をエンティティ間の関係グラフとして扱う。
関係グラフは、初期グラフのエッジを編集することによって反復的に構成される。
エッジを編集する方法は、それらをクローズファーストな方法で分類することです。
論文 参考訳(メタデータ) (2021-06-18T03:46:49Z) - GraphFormers: GNN-nested Transformers for Representation Learning on
Textual Graph [53.70520466556453]
階層的にGNNコンポーネントを言語モデルのトランスフォーマーブロックと一緒にネストするGraphFormerを提案する。
提案したアーキテクチャでは、テキストエンコーディングとグラフ集約を反復的なワークフローに融合する。
さらに、プログレッシブ・ラーニング・ストラテジーを導入し、そのモデルが操作されたデータと元のデータに基づいて連続的に訓練され、グラフ上の情報を統合する能力を強化する。
論文 参考訳(メタデータ) (2021-05-06T12:20:41Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
グラフ畳み込みネットワークにおける既存の表現学習手法は主に、各ノードの近傍を知覚全体として記述することで設計される。
本稿では,グラフの潜在意味パスを学習することで暗黙的な意味を探索する意味グラフ畳み込みネットワーク(sgcn)を提案する。
論文 参考訳(メタデータ) (2021-01-16T16:18:43Z) - CopulaGNN: Towards Integrating Representational and Correlational Roles
of Graphs in Graph Neural Networks [23.115288017590093]
グラフニューラルネットワーク(GNN)モデルが両タイプの情報を効果的に活用する方法について検討する。
提案したCopula Graph Neural Network (CopulaGNN)は、幅広いGNNモデルをベースモデルとして扱うことができる。
論文 参考訳(メタデータ) (2020-10-05T15:20:04Z) - Heterogeneous Graph Neural Networks for Extractive Document
Summarization [101.17980994606836]
クロス文関係は、抽出文書要約における重要なステップである。
We present a graph-based neural network for extractive summarization (HeterSumGraph)
抽出文書要約のためのグラフベースニューラルネットワークに異なる種類のノードを導入する。
論文 参考訳(メタデータ) (2020-04-26T14:38:11Z) - Modeling Global and Local Node Contexts for Text Generation from
Knowledge Graphs [63.12058935995516]
最近のグラフ・トゥ・テキストモデルでは、グローバル・アグリゲーションまたはローカル・アグリゲーションを使用してグラフベースのデータからテキストを生成する。
本稿では,グローバルなノードコンテキストとローカルなノードコンテキストを組み合わせた入力グラフを符号化するニューラルモデルを提案する。
われわれのアプローチは、2つのグラフからテキストへのデータセットに大きな改善をもたらす。
論文 参考訳(メタデータ) (2020-01-29T18:24:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。